Substitution Revisited!

Allen Stoughton

Computer Science Subject Group
School of Mathematical and Physical Sciences
University of Sussex
Falmer, Brighton BN1 9QH, England

Abstract. A definition of simultaneous substitution for the lambda calculus is presented that
is easier to work with than standard single substitution because it is a definition by structural
recursion, instead of recursion on the length of terms, and bound variables are always renamed.
As a result, many proofs involving substitution are by structural induction, instead of induction
on the length of terms, and are simpler than the corresponding standard proofs because of the
reduction in the number of cases that must be considered. Furthermore, because of the uniform
renaming of bound variables, identity substitutions normalize terms with respect to equivalence
up to the renaming of bound variables (a-congruence), allowing induction-free proofs of some
theorems that ordinarily would be proved by induction on the relation of a-congruence.

A series of results relating simultaneous substitution and a-congruence are proved, and a
simple proof of the “substitution lemma” of denotational semantics is given.

1 Introduction

Logics for languages in which variables can be bound generally involve substitution. Unrestricted,
naive substitution leads to inconsistencies, since free variables may be captured in the process. Two
ways of avoiding this problem are common. In the first, as in many presentations of the first order
predicate calculus, substitution is performed in the naive way but is only allowed when free variables
are not captured. In the second, as in the lambda calculus, unrestricted substitution is allowed but
bound variables are renamed, as necessary, to avoid capturing. This paper focuses on unrestricted
substitution for the untyped lambda calculus. Most of the definitions and results will, however,
apply easily to other languages.

The standard definition of unrestricted substitution for the lambda calculus was given by Curry
and Feys in [2] p. 94, where the notation [M/x]N was used to denote the substitution of M for
the free occurrences of z in N. (See also [6] p. 62 and [1] p. 578.) Unfortunately, proofs involving
this definition of substitution are notoriously tedious. First, in cases when capturing would occur,
[M/x]Ay.N is defined to be Az.[M/x][z/y]N, for a new variable z. Since [z/y]N is not a subterm

L Appears in Theoretical Computer Science, 59:317-325, 1988.

of Ay.N, [—/—]N is a definition by recursion on the length instead of the structure of N, and thus
many proofs must be by induction on the length of N, and contain two applications of the inductive
hypothesis for this subcase. Second, there are three subcases to the abstraction case of the definition,
since bound variables are renamed only when necessary, and thus there are three subcases to consider
in many proofs. Because bound variables must sometimes be renamed, it is necessary, in general, to
work with the equivalence of terms up to the renaming of bound variables (a-congruence) instead of
identity. Complicating the definition by preserving identity whenever possible is thus questionable.

For examples of these complexities see [2] pp. 95—104 for the proofs of a series of basic theorems
about substitution, and [6] pp. 161-166 for a proof of the “substitution lemma” of denotational
semantics. (This proof of the substitution lemmais incorrectly claimed to be by structural induction;
it is actually by induction on the length of terms.)

This paper gives a definition of simultaneous substitution that is by structural recursion, since
bound variables are renamed in parallel with substitutions, and in which bound variables are always
renamed. As a result, many proofs involving substitution are by structural induction, and are
simpler than the corresponding standard proofs because of the reduction in the number of cases that
must be considered. Furthermore, because of the uniform renaming of bound variables, identity
substitutions normalize terms with respect to a-congruence, allowing induction-free proofs of some
theorems that ordinarily would be proved by induction on the relation of a-congruence.

The idea of always renaming bound variables is fairly obvious, and is also used, e.g., in [4] p.
379. The key technique of using simultaneous substitution in order to give a definition by structural
recursion also appears in [3] pp. 49-56, where substitution for the predicate calculus is defined. This
paper’s contribution is to develop a simple, unified theory, based upon these ideas.

Section 2 of the paper gives the definitions of simultaneous substitution and a-congruence. Sec-
tion 3 proves a series of results relating substitution and a-congruence. Finally, section 4 gives a
simple proof of the “substitution lemma” of denotational semantics. With one exception, the results
of section 4 are independent from those of section 3.

2 Definitions

The application of a function f to an argument a is written fa. Function space formation, D— F,
associates to the right, and function application to the left. For f: D —FE d € D and e € E, the
function f[e/d] from D to E is defined by

e ifd"=d, and
fd otherwise.

lefad ={

Two functions f,g: D — E are equal over a subset X of D, written f =% g¢, iff for all z € X,
fe=gux.

Let V be a denumerable set of variables, and choice be a choice function for V, i.e., a function
from (PV)— {0} to V such that choice X € X, for all nonempty X C V. The set of {erms T is least
such that

xeT if xeV,
MNeT if MeTand N €T, and
AMeT if xeVandMeT.

As usual, we use the lower case letters u, v, w, z, y and z and the upper case letters M and N to
range over variables and terms, respectively.
Define the free variable function FV(—):T— PV by structural recursion:

FV(2) = {x},
FV(M N) = FV(M)UFV(N), and
FV(Az. M) = FV(M) — {z}.

A variable x is free in a term M iff x € FV(M).
The set of substitutions S is V — T, and we let o range over S. The identity substitution ¢ is

defined by ¢ x = z. Define new: V—T—S5—((PV)—{0}) by
newx Mo ={y|forallze FV(M)—{z}, y€ FV(o2)},

so that new x M o contains all but a finite subset of V. The simultancous substitution M o of ox
for the free occurrences of x in M, for all x, is defined by structural recursion:

ro = oz,
(M N)o = (Mo)(N o), and
(Az.M)o = Ay (M oly/z]), where y = choice(new x M o).

The composition o3 o o1 of substitutions o1 and o3 is defined by (62 0 o1)2 = (01 2)o2. Note that
(Az.M)o is independent from o #, a fact which, in addition to making intuitive sense, is necessary
for the validity of much of section 3, e.g., theorems 3.2 and 3.5.
Let =, be the relation of a-congruence, i.e., the least equivalence relation over T such that
() MN =4, M'N"if M =, M' and N =, N’; and
(o) Ae. M =4 Ay.N if either
(i)x=yand M =, N, or
(i) y € FV(M) and M ¢[y/x] =4 N.
We say that M and N are a-congruent iff M =, N. Substitutions o1 and o2 are a-congruent over
X CV, written o7 =

iff 01 IZ

ff o9, Iff 012 =, o052, for all # € X, and a-congruent, written o1 =, o3,
o2. The hypothesis of condition («) is used frequently below, and is abbreviated by
M(z) =4 N(y); it can be read as M and N are a-congruent up to the renaming of » to y. We will
see below that M (z) =, N(y) iff N(y) = M(x) (corollary 3.7).

3 Substitution and «-Congruence

Lemma 3.1 (i) If y &€ FV(M) then e M =, Ay.(M y/=]).
(i) x e FV(M o) iff e € FV(c y), for some y € FV(M).
[fM =4 N then FV(M) = FV(N).
If My =4 My and oy :EV(MI)_{H oo then newz My oy = new z M5 oo.
If oy VM) 5, then Moy = M o5.
Mi=, M
If M(2) =4 N(y) then newaer M o = newy N o.
Fory e newae Moy, newa M (02 001) = newy (M o1]y/x]) oa.

(i
(iv

(v
(vi
(vii

e e e S e

(viii

Proof. For (i), M ([y/x] =4 M t[y/x], by reflexivity, and the result follows from («).

(ii) follows by structural induction over M.

(iii) is by induction on =, i.e., define a relation &= C =, by M = N ifft M =, N and FV(M) =
FV(N), and show that = satisfies the defining conditions of =,. (ii) is used to show that as satisfies
(o).

(iv) is a consequence of (iii).

(v) is by structural induction on M, using (iv) for the abstraction case.

(vi) follows by structural induction on M, using (i) for the abstraction case.

(vii) follows easily from (iii).

We give a detailed proof of (viii), as an example. First, suppose w € new # M (c3 001). To show
that w € new y (M o1[y/x]) o2, suppose z € FV(M o1[y/z]) —{y}; we must show that w ¢ FV(o3 z).
Then z € FV(oi[y/z]v), for some v € FV(M), and, since z # y, it follows that v # x and
z € FV(oy v). Since w € new x M (03001) and v € FV(M)—{z}, w € FV((o2001)v) = FV((01 v)o2),
and thus w ¢ FV(oau), for all v € FV(s,v). But z € FV(o1v), and thus w ¢ FV(oyz), as
required. Second, suppose w € new y (M o1[y/x]) o2. To show that w € new x M (2 0 01), suppose
z € FV(M) — {z}. We must show that w € FV((o1 z)02), and this will follow from showing that
w & FV(ozv), under the assumption that v € FV(ey2). Then v € FV(oi[y/z] z), since z # x,
and thus v € FV(M o1[y/x]). Furthermore, v # y, since, by its definition, y € FV (o z). But then
v € FV(M o1[y/x]) —{y}, and, since w € new y (M o1[y/z]) o2, we can conclude that w & FV(oqv),
as required. O

From (v) and (vi) of lemma 3.1, if € FV(M) then M ([N/x] = M.
The following Syntactic Substitution Theorem shows that performing the composition of two
substitutions yields the same result as performing those substitutions sequentially.

Theorem 3.2 (M o1)oy = M(o2007)

Proof. By structural induction on M. The variable and application cases are trivial. For an
abstraction Az. M,

(Ae.M)oy)os = (Ay.(M o1[y/x]))o
= M (M au[y/z])o=[y /y])
= A (M (o2[y /y] o (o1]y/]))) (induction),

where y = choice(new x M o1) and ' = choice(new y (M o1[y/x]) 02), and
(Az.M)(o2001) = Az.(M(02 0 01)[2/2]),
where z = choice(new x M (o3 0 01)). But z = ¢/, by lemma 3.1 (viii), and
M(osl=/] o (oxly/ 1)) = M (93 0 1)z /2]
follows by two applications of lemma 3.1 (v). O
Corollary 3.3 Ify & FV(M) then (M ([y/z])o[N/y] = M o[N/z].

Proof. Follows easily from theorem 3.2 and lemma 3.1 (v). O

Corollary 3.4 (i)tooc =40 =001

(il) 30 (02001) = (030 02) 0 01

Proof. (i) is by lemma 3.1 (vi), and (ii) follows easily from theorem 3.2. O

The following theorem, the basis of the remainder of the section, is remarkable: applying a
substitution to each of two a-congruent terms yields equal—not just a-congruent—results! An
immediate corollary 1s that identity substitutions normalize terms with respect to a-congruence, a
fact which allows induction-free proofs of some theorems (like corollaries 3.10 and 4.5) that ordinarily
would be proved by induction on =,.

Theorem 3.5 If M =, N then Mo = No.

Proof. By induction on =, 1.e., define a relationa~ C =, by M & Nifft M =, N and M o = N o,
for all o, and show that & satisfies the defining conditions of =,. Obviously & is an equivalence
relation and satisfies (u). For («), suppose that either
(i)r=yand M =~ N, or
(i) y ¢ FV(M) and M «[y/x] ~ N.
We must show that (Az.M)o = (Ay.N)o, for all ¢. By lemma 3.1 (vii), newaz Mo = newy N o,
and thus
(Ax.M)o = Az.(M o[z /z])
and
(Ay.N)o = Az.(N a[z/y]),
for z = choice(new x M). If (i) then M o[z/x] = N o[z/x] = N o[z/y], by induction. Alternatively,
if (ii) then M o[z/2] = (M ([y/z])o[z/y] = N o[z/y], by corollary 3.3 and induction. O

Corollary 3.6 (i) M =, N {ff Mt =N

(i) o1 :gf oo ifftooy =X ooy

Proof. (i) follows from theorem 3.5 and lemma 3.1 (vi), and (ii) is immediate from (i). O
Surprisingly, we can only now prove the following simply stated result.

Corollary 3.7 M(z) =, N(y) iff N(y) =a M(x)

Proof. Follows easily from lemma 3.1 (iii) and (vi), corollary 3.3 and theorem 3.5. O

The following corollary shows that substitution and a-congruence are compatible.

Corollary 3.8 If My =, Ms and o ZEV(MI) oo then My oy =4 M5 o5,

=FV(M1) ;o ¢y, and thus

Proof. By corollary 3.6 (ii), ¢t 0 04
M1 01 =« (M1 O'l)L = Ml(L o 0'1) = Ml(L o 0'2) = MZ(L o 0'2) = (M2 UZ)L —a M2 09,
by lemma 3.1 (vi), theorem 3.2, lemma 3.1 (v) and theorem 3.5. O

The following is a companion result to corollary 3.3. Unfortunately, it cannot be strengthened
from =, to =.

Corollary 3.9 Ify € newax M o then (M oly/x])[N/y]l =« M o[N/z].

Proof. Follows easily from theorem 3.2 and corollary 3.8. O

Now we are able to characterize the structure of a-congruence.

Corollary 3.10 If M =, N then one of the following conditions holds:
(i) M and N are equal variables;
(ii) M and N are applications My My and Ny N, respectively, and M; =4 Ny, fori=1,2;
(iii) M and N are abstractions Ax.M' and Ay.N', respectively, and M'(z) =4 N'(y).

Proof. If M =, N then M ¢ = N, by corollary 3.6 (i). There are three cases to consider.

(i) If M is a variable # then # = ¢ = N, and thus N = =.

(ii) If M is an application My Ma then (M ¢)(M2¢) = N ¢, and thus N is an application Ny Na,
and M; ¢ = Ny, for i = 1,2. But then M; =, N;, for i = 1,2, by corollary 3.6 (i).

(iii) If M is an abstraction Az.M’ then Az. (M’ i[z/x]) = N, for z = choice(new x M':), and
thus N is an abstraction Ay.N', and (Ay.N")e = Az.(N'¢[z/y]). Since M’ ¢[z/x] = N' [z /y],

M ulyfa) =o (M o[z/2])ely/z] = (N"o[2/y])ely/) =a N'o[y/v] = N'e =a N,

by corollary 3.9. If @« = y then M’ =, M'v = M'.y/x] =, N’. Alternatively, if # # y then
y & FV(M'), since y € FV(Ay.N') = FV(Ax.M'). In either case, M'(z) =, N'(y), as required. O

Our final corollary shows that, up to a-congruence, any element of new & M ¢ may be chosen as
the bound variable of (Az.M)o.

Corollary 3.11 Ify € newx M o then (Ax.M)o =4 Ay.(M oly/x]).

Proof. Follows from corollary 3.9. 0O

4 Substitution and Denotational Semantics

This section consists of a proof of the “substitution lemma” of denotational semantics. Familiarity
with some standard definitions and results about complete partial orders (cpo’s) and continuous
functions, which can be found, e.g., in [5], is assumed. Our denotational semantics is taken from [7],
with the exception that cpo’s instead of complete lattices are used.

Let the cpo E of expression values be a nontrivial solution to the isomorphism equation £/ = F —
E, and in:(F— FE)— F and out: E— (F— FE) be continuous functions such that out o in = idp_.p
and in o out = 1dg. Let the cpo U of environments be V — E| ordered componentwise; we use p to
range over U. Define a denotational semantics £:T'— U — E by structural recursion:

Elx] = Ap.pe,
E[M N] = Ap.(out E[M]p)E[N]p, and
E[e M] = Ap.in Xe.E[M]ple/x].

The composition p o ¢ of an environment p and a substitution ¢ is the environment defined by

(pooa)e =Eox]p.

Lemma 4.1 If py ="V gy then E[M]p1 = E[M]p2.
Proof. An easy structural induction over M. 0O
We can now state and prove the simultaneous substitution form of the “substitution lemma”. A
specialization to single substitution follows as a corollary.
Theorem 4.2 E[Molp = E[M](po o)

Proof. By induction on the structure of M. The variable and application cases are obvious. For
an abstraction Az. M,

£l Mol = EDy.(M oly/)]p
in Me 1M oly/allple/s]
in Xe.E[M](ple/y] o oly/x]) (induction),

where y = choice(new x M o), and
E[e M](poo)=inAel[M](poo)le/x].
Thus, by lemma 4.1, it is sufficient to show that
(ple/yl o oly/z])z = ((p o o)le/x])z,

for all z € FV(M). If z = x then both sides of this equation are e. Alternatively, if z # # then

(ple/yl e oly/z])z = E[o z]ple/y]
= &loz]p (lemma4.1)

= ((poa)le/x])z,

since, by its definition, y ¢ FV(cz). O

Theorem 4.2 is easily seen to be the semantic analogue of theorem 3.2, the Syntactic Substitution
Theorem.

Corollary 4.3 E[M ([N/x]]p = E[M]p[E[N]p/]
Proof. Immediate from theorem 4.2. O

Corollary 4.4 (i) pot=1p
(il) po(o2001)=(pooa) ooy

Proof. (i) is obvious, and (ii) is a consequence of theorem 4.2. O

All of the proofs presented so far in this section are completely independent from the results of
section 3. A direct proof of the following, final corollary is also possible, by induction on =,; we
prefer, however, to give an induction-free proof, exploiting the normalizing effect of substitution.

Corollary 4.5 If M =, N then E[M] = E[N].
Proof. If M =, N then M ¢ = N, by corollary 3.6, and thus

E[MTp = EIM(po 0) = E[M Jp = EIN ilp = E[N(po 1) = E[NTp,
for all p, showing that E[M] = E[N]. O

Acknowledgements

Marek Bednarczyk and Matthew Hennessy read a draft of this paper, and showed that several of
its theorems could be strengthened from a-congruence to equality. In particular, they proved that
identity substitutions normalize terms with respect to a-congruence, allowing induction-free proofs
of two theorems that I originally proved by induction over the relation of a-congruence.

I was financially supported by a University of Edinburgh studentship and a research fellowship
from the Science and Engineering Research Council of Great Britain.

References

[1] H. Barendregt, The Lambda Caleulus: Its Syntax and Semantics (North-Holland, Amsterdam,
1984).

[2] H. Curry and R. Feys, Combinatory Logic, Vol. T (North-Holland, Amsterdam, 1958).
[3] H. Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic (Springer-Verlag, Berlin, 1984).
[4] G. Revesz, Axioms for the theory of lambda-conversion, STAM J. Comput. 14 (2) (1985).

[5] M. Smyth and G. Plotkin, The category-theoretic solution of recursive domain equations, SIAM
J. Comput. 11 (4) (1982).

[6] J. Stoy, Denotational Semantics: The Scotl-Strachey Approach to Programming Language Theory
(MIT Press, Cambridge, 1977).

[7] C. Wadsworth, The relation between computational and denotational properties for Scott’s Doo-

models of the lambda-calculus, STAM J. Comput. 5 (3) (1976).

