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Abstract
We show that the continuous function model is the unique extensional (but not necessarily
pointwise ordered) model of the variant of the applied typed lambda calculus PCF that includes
the “parallel or” operation.

1 Introduction

Several extensional models of the applied typed lambda calculus PCF are known to exist, including:

(i) The continuous function model, which is order-extensional (pointwise ordered) but not equa-
tionally fully abstract [Plo]. (A model is equationally fully abstract when terms are identified in the
model exactly when they are operationally equivalent.)

(ii) The stable function model, which is neither order-extensional nor equationally fully abstract
[Ber][BCL].

(iii) The terminal object of the category of equationally fully abstract, extensional models, which
is inequationally fully abstract and order-extensional [Mil][Sto2]. (A model is inequationally fully
abstract iff one term is less than another in the model exactly when the first is operationally less
defined than the second.)

(iv) The initial object of the above category, which is neither inequationally fully abstract nor
order-extensional [Sto2].

In contrast, the only known extensional model of parallel PCF, i.e., PCF augmented with the
“parallel or” operation, is the continuous function model, which is inequationally fully abstract and
order-extensional [Plo]. In fact, a result of Plotkin/Milner/Berry’s shows that this model is the
unique inequationally fully abstract, extensional model of parallel PCF [Ber][BCL][Mil][Plo]. But
does parallel PCF have extensional models that are not inequationally fully abstract or not even
equationally fully abstract? What about (necessarily non-inequationally fully abstract) extensional
models that are not order-extensional? The purpose of this paper is to answer these questions in
the negative.

Some of the techniques used in our proof that the continuous function model is the unique exten-
sional model of parallel PCF are similar to the ones used by Plotkin in his proof of the definability
theorem for parallel PCF (see lemma 4.5 of [Plo]).

*Appears in Sizth Annual IEEE Symposium on Logic in Computer Science, pp. 146-151, IEEE, 1991.




2 Preliminaries

The reader is assumed to be familiar with such standard domain-theoretic concepts as complete
partial orders (cpo’s), continuous functions, and w-algebraic, strongly algebraic and consistently
complete ¢cpo’s. Given cpo’s X and Y, we write X - Y for the cpo of all continuous functions from
X to Y, ordered pointwise.

Familiarity with algebras and ordered algebras over many-sorted signatures is also assumed (see
[Stol] for an introduction to this material). Signatures contain distinguished constants §2; at each
sort s, which stand for divergence and are interpreted as least elements in ordered algebras. We use
uppercase script letters (A, B, etc.) to denote algebras and the corresponding italic letters (A, B,
etc.) to stand for their carriers. The initial ordered algebra consists of the initial (term) algebra
with the “Q-match” ordering: one term is less than another when the second can be formed by
replacing occurrences of 2 in the first by terms. An ordered algebra is called complete iff its carrier
is a cpo and operations are continuous, and an order-isomorphism over complete ordered algebras
i1s a homomorphism that is a surjective order-embedding on the underlying cpo’s.

For technical simplicity, we have chosen to work with a combinatory logic version of parallel
PCF with a single ground type ¢, whose intended interpretation is the natural numbers. From the
viewpoint of the conditional and parallel or operations, non-zero and zero are interpreted as true
and false, respectively.

The syntax of parallel PCF 1s specified by a signature, the sorts of which consist of parallel PCF’s
types. The set of sorts S 1s least such that

(i) t € 5, and

(ii) s1 — s, € S'if s; € S and s2 € S.

As usual, we let — associate to the right. Define /7, for n € w, by: (° = ¢ and "*! =t — . The
signature 3 over S has the following operators:
(i) Qs of type s,
(ii
(iii) S

K, s, of type (s1 — s2 — 1),
51,5085 Of type ((s1 — 52 — 53) — (51 — 52) — 51 — 53),

(iv) Y, of type ((s — s) — s),

(vi) Succ and Pred of type (¢ —¢),
(vii) Ifs of type (1t = s — s —s),
(viii) POr of type (¢2),

(iX) 5,5, Of type (s1 — 52) X 51 — 59,

)
)
)
(v) n of type ¢, for n € w,
)
)
)

where the compound sorts are parenthesized in order to avoid confusion. Thus - (application) is a
binary operator, and all of the other operators are nullary. In keeping with standard practice, we
usually abbreviate M - N to M N, and let application associate to the left.
A model A of parallel PCF is a complete ordered algebra such that the following conditions hold:
(i) A, is the flat cpo



(i) For all a1 € A,, and as € A,,, K, 5, a1 a2 = aq;

(iii) For all a1 € As sosy, a2 € Asy s, and as € A;,, Ss, 50,55 @1 2 a3 = a1 az (as az);

(iv) For all @ € A;_;, Vs a is the least fixed point of the continuous function over A, that a
represents;

(v) For all @ € A,, Succa is equal to L,if a = L, and is equal to a + 1, if a € w;

(vi) For all a € A,, Pred a is equal to L, if a = L, is equal to 0, if « = 0, and is equal to a — 1,
it a € w —{0};

(vii) For all a1 € A, and as,a3 € A;, If; a1 azas is equal to L, if a; = L, is equal to as, if
a; € w— {0}, and is equal to as, if a; = 0;

(viii) For all a1,az € A,, POray as is equal to 1, if either a; € w — {0} or az € w — {0}, is equal
to 0, if a3 = 0 and as = 0, and is equal to L, otherwise;

(ix) For all ay,as € A5, s,, if a1 a = as a, for all a € A, then a; = as.

We require that a model A be a complete ordered algebra so that each A is a cpo with least
element €2, and the application operations -5, 5,: As, s, X As, — A,, are continuous. Condition (iv)
says that the recursion constants Y; are least fixed point operations, and conditions (ii) and (iii)
require that models be combinatory algebras. Condition (i) says that A, is the flat cpo of natural
numbers, and conditions (v)—(viii) require that the operations on A, behave as expected. Finally,
condition (ix) says that models are extensional and has been included in the definition of model
since we have no need to consider non-extensional models in the sequel.

Application is left-strict in all models A since Ly, s, Ty s, Koy 5q Loy, and thus Ly, a Ty,
Koy s, Ls,a= 1, forall a € A,,. It is easy to see that if ay, a2 € A, ..., for m > 0, then
a1 =ay flayzq - xpm =asey -y forall 2, € A5, 1 <0 <m.

The continuous function model is the unique model A such that A, =w,, A, 5, = A5, = A

1 $2

for all s1,s9 € S, application is function application and ng = n for all n € w.

Next, we define several combinators that will be required below. We confuse use and mention
for these combinators: given a combinator C', we also write C' for its denotation in any model that
may be at hand.

For s € S, we write I, for the term

Ss,s—»s,s [(s,s—w [(s,s

of sort s — s. I i1s the identity operation in all models.
We code lambda abstractions in terms of the S, K and I combinators, in the standard way.
For s € S, define approximations Y* to Y; of sort (s — s) — s by

0 1
Ys = Q(é’—»é’)—*sa st+ = Ss—»s,s,s Is—»s st’

so that Y” is an w-chain in the initial ordered algebra, and thus in all models.
Following [Mil][Ber][BCL], we can define syntactic projections ¥

" of sort s—s, for all n € w and

s €S, by
vy =Y" F, Ve, = Azy T (2(¥7, v)),
where F of sort (¢ —¢) — ¢ — ¢ is
ey If y
(Suce(z(Pred y)))

0.



Expanding the abstractions, one can see that the ¥7 form an w-chain in the initial ordered algebra.
Furthermore, in any model A, the ¥? represent an w-chain of continuous projections (retractions
less than the identity function) with finite image whose lub is the identify function. Thus each A; is
a strongly algebraic (SFP) cpo whose set of isolated elements is |J,, ., A, where we write A} for the
subposet of A; whose elements are { ¥%a | a € A; }. Clearly A? = {1,0,1,...,n— 1}, A= {L,}
and A7 C A7 if n < m. It is useful to note that for alla € A;, .5 s, a € A? iff

§1— =8y, —S8
axy - By =V (a(P" 21) - (V" 24))
for all z; € A;,. Given sorts s; and sz, we define an w-chain

1/)71 E (Asl < AS2) i (Asl = ASQ)

$1,82

of continuous projections with finite image whose lub is the identity function by
o o =W (WY, - 2)).

This demonstrates that A;, - A;, is also strongly algebraic.

Although POr is not isolated in any model, it is uniformly interdefinable in all models with
U2 POr, which is isolated.

Let the equality test Eq of sort +% be

Y(Azay. If ©
(If y (z(Pred x)(Pred y)) 0)
(Noty)),

where Not of sort ¢t —¢is Az. If 0 1.
For n € w, define operators And,, of sort «* by: Andg = 1 and

Andpy1 = ey -y If e (Andpyy -+ yn) 0.

From [Sto3], we know that we can define the parallel if operator, PIf, of sort :> by PIf = Y,« H 0,
where H of sort +* — % is defined by

H = Afwayz. If (POr (PAnd (Eqyw) (Fqzw))
(PAnd x (Eqyw))
(PAnd (Notz) (Eqzw)))

w

(f (Succw)wyz).

Here, we have extended POr to three arguments in the obvious way, and PAnd of sort :? is the
“parallel and” operation, dual to POr:

PAnd = Azy. Not (POr (Not z) (Noty)).

Then, for all models A and ay,as,a3 € A,, PIf aj as as is equal to as Mag, if a1 = L, is equal to as,
if a1 € w— {0}, and is equal to as, if a; = 0.



3 Standard Models

Let < be the least reflexive relation over S such that
s < s —s9ifs’ <spors’ <so.

Then < is a partial ordering, and we read s < s’ as s is a subsort of s'.
Let s € S. A model A is

(i) s-order-extensional iff for all s1,s5 € S such that s; — 55 < s and a1, a2 € A5, s,
a1 Casiffayz Casxfor allz € A;,; and

(ii) s-standard iff it is s-order-extensional and for all s;,s5 € S such that s; — s2 < s and
f € As, = As,, there is a (unique) a € A;, 5, such that a -2 = fux for all © € A;,.
We say that a model is order-extensional (respectively, standard) iff it is s-order-extensional (re-
spectively, s-standard) for all s € S.

By the above definitions, all models are t-order-extensional and ¢-standard, and if A is s-order-
extensional (respectively, s-standard) and s’ < s, then A is s’-order-extensional (respectively, s'-
standard). Tt is easy to see that the continuous function model is standard.

Proposition 3.1 If A and B are standard models, then there s a unique order-isomorphism from

A to B.
Proof. Routine. The order-isomorphism can be defined by recursion on S. 0O

Lemma 3.2 (Milner) If A is an s-order-extensional model, then Ag is a Scotl domain, i.c., a
consistently complete, w-algebraic cpo.

Proof. First, define glb operators Inf; of sort s — s — s by

Inf, = Awy. If (Fqxy)xQ,
Infsl—>52 = /\xyZInfS2(xz)(yz)’

and show by induction on s € S that if A is s-order-extensional, then Infs ay as is the glb of a; and
as for all ay,as € As. The result then follows from the fact that strongly algebraic cpo’s with binary
glb’s have lub’s of all consistent pairs, i.e., are consistently complete. See [Mil] (or lemma 5.5 of

[Sto2]). O

Lemma 3.3 Suppose that A is an si- and ss-standard model such that

(i) for all isolated ay,a2 € As;—s,, a1 C as iff ay x C az @ for all x € A;,; and

(ii) for all isolated f € A5, = As,, there is an isolated a € A, 5, such that a - = fux for all
xr € As,.
Then A is s1 — sg-standard.

Proof. We begin by showing that A is s; — sg-order-extensional. Suppose that a1,a; € A, s,
and a1 C azz for all # € A;,. Suppose toward a contradiction that a3 Z as. Then, since
a; = |_|n€w W qq, there exists a least n € w such that ¥” a; [Z as. Then, for all z € A?u

ViagizCajzCase = |_|(\I!ma2x),

meEwW



and, since W™ ay x is isolated, there is a least m, > n such that ¥" a;x © V™ a3 z. But A7 is
finite, and thus we can let [ be the greatest m, such that » € AL . Clearly, I > n and ¥"a; z C
U qox C Ul ayz for all z € A2, and thus

U”qy x U™y (" )
U a, (9" x)
U a, (\I!l z)

= \I!lazx

m Im

for all # € A,,. But then (i) implies that ¥" ¢ C U a5, in contradiction to the fact that ¥” a4 Z as.

Now, suppose that f € A;, = A;,. By (ii) and the s; — sy-order-extensionality of A, there is an
w-chain a, € A;, s, of isolated elements such that a, - = ¢  fa forall z € A;,. But then it is
easy to see that (| |, ., an) 2= faforallz e A;,. D

nEew

Lemma 3.4 If A is an s1 — sa-standard model, then two elements a1, as € As, 5, are inconsistent
ioff there 1s an x € A;, such that ay x and as x are inconsistent.

Proof. The “if” direction is obvious. For the “only if” direction, suppose toward a contradiction
that there is no such z. Then we can define an h € A;, = A;, by he = (a1 - 2) U (az - ©), since A,
is consistently complete (lemma 3.2). Furthermore, there is an @’ € A, ., such that ¢’ -2 = hz
for all # € Ay, since A is s1 — so-standard. But a’ is the lub of a; and as since A is s; — sg-order-
extensional—a contradiction. 0O

Lemma 3.5 If A is an s-order-extenstonal model, then for all isolated elements a € Ag, there is a
[a] 1 ifxda,
ale =
1L fzZa.
Proof. By induction on S. For the base case ¢, we can define [L,] = Az.1 and

[n] = Ae. If (Fqnx)1Q, forn € w.

unique [a] € As—, such that

Now, suppose that the result holds for s;,s2 € S and that A is s; — ss-order-extensional. If
a € As s, is isolated, then a € A}, _, for some n € w. Let uy, ..., up be an enumeration of AY |

so that au; € A7, for all 1 <¢ <m. We can then define
[a] = Az, Andpy ([awi](zu1)) - ([@ um] (2 um)),

since A is sp-order-extensional. If # J a, then « u; J au; for all i, and thus [a]e = 1. Alternatively, if
z 2 a, then there exists a y € A;, such that zy 2 ay. But then z(¥" y) 2 a(¥" y), since otherwise
we would have

zyJe(P"y) Ja(P"y) =ay.
Thus [e]la = L. O

Lemma 3.6 If A is an s-standard model, then for all inconsistent pairs of isolated elements ay, as €
Ag, there is a unique [ay,as] € As—., such that
1 Zf$ g a,
[a1,a0]e = 0 ifr Das,
L ifxDas andz D as.



Proof. By induction on S. For the base case ¢, define

[n,m] = Axe. If (Fqun)
1
(If (Bqzm)0Q),

for all n,m € w such that n # m. Now, suppose that the result holds for s1,s2 € S and that A is

n

s1—sa-standard. If ai,as € Ay, 4, is an inconsistent pair of isolated elements, then ay,as € AY, .

for some n € w. Lemma 3.4 tells us that there exists an © € A;, such that a; x,a22 € A?Q are
inconsistent. Thus we can define

[a1,a2] = Ah. If (Jay &, az 2] (h x))
([ar]h)
(If ([a2]h) 0€2),

by lemma 3.5 and the inductive hypothesis. O

As the reader may have noticed, we have made no use of parallel or so far, and thus everything
that we have proved will also hold for models of ordinary, sequential PCF. The proof of the next
lemma does require the existence of parallel or, however, and that lemma and the following theorem
and corollary do not hold for models of sequential PCF.

as follows.

Given a model A, n € w and s1,...,85, € 5 for m > 1, we define a poset AT

Its elements are the partial functions f from AY x ... x AY to A} that are comsistent in the
sense that if ({ar,...,am), ) € f and {{a},...,a),l'} € f for |;I'! € w, then either | = I’ or
there is an ¢ such that a; and a} are inconsistent in A} (or, equivalently, in A, ). The elements
of A}, —areordered by: f < g iff dom f = domg and f(ay,...,an) C g{ai,. .., an) whenever
(ar,...,am) €dom f. If f€ AR [ and (ai,...,an) € dom f, then we write f\ (a1, ..., an) for
the element f|(dom f) — {{a1,...,am)} of A7 | .
We say that an f € A} | = represents an a € AY . _, _, iff for all (zy,... 2y) € A7 X
cox A} and 1€ A} —{L},axy - 2, = Liff there exists a (¢}, ..., 2],) € dom f such that 2} C «;
for all @ and f(z},...,2;,) = [. It is easy to see that any f € AY ~
a€ A?

S =+ =S —ri)

s represents at most one
S8m

since if a; and as are represented by f, then
A1 T Ly, = A2 X1 - Ty

for all z; € A” | and thus a; = as.

847

Lemma 3.7 Suppose n € w, s1,...,85 € S for m > 1 and A is a model that is s;-standard for
all i. Then for all f € AY, |
Furthermore, if f < g, then fg g, forall f,g € A

n
S1— =8, —i

.+ there exists a unique fE A that is represented by f.

S m

represent the single element of A7 L.

S =+ =S —ri)

Proof. If n =0, then both elements of A7,
So, assume that n > 1.

We show by induction on k € w that for all f,g € AT, ,if |f] = k and f < g, then f and
g exist and fg 9. The base case k = 0 is obvious since ) represents L. So, assume that the result
holds for k, |f| = k+ 1 and f < ¢. There are two cases to consider.

S m

) Sm



1) Suppose that there exist {ai,...,an) € dom f and {(a},...,al.) € dom f such that a; and a}
1 m [
are inconsistent for some i. Define

F=f\{a1,...,am), G=g\{a1,...,am)

and
Fl=f\{(d,...,ap,), G =g\(d,... a,),

so that, by the inductive hypothesis, ﬁ, ﬁ\’, G and G exist, r c G and F/ c G Then, we can
define

o~

f=HFF, §G=HGQ,

where
H =X yy'x1 - xm. PIf ([ai, a}]2;)
(y/ Ly - xm)
(y 21 - ).

Then fg g since application is monotonic, and it is straightforward to check that f and g have the
required properties.

(ii) Suppose that {ai,...,an) € dom f and {(af,...,al,) € dom f implies that a; and a} are
consistent for all . Then, there is an! € A? —{L} such that ran f C {L,{} D rang. (If ran g = {L},
then [ can be any element of A? —{L}.) Suppose that {{a1,...,an),b) € f and {{a1,...,am),b) € g,
so that b C b’. Define

=71 \lar,...,am), g =g\ {a,...,am),

so that jA” and gA’ exist and jA” C gA’ Then we can define
f=Hfb,  G=HgV,

where
H = dyzze, 2.
Z(If (Andm ([ar]z1) - ([am]em)) 2 Q)
(y TR xm)

and Z of sort 2 stands for

Axy. If (POr (Eqlz) (Eqly)) L.

Clearly fg g, and it is straightforward to check that f and g have the required properties. O
Theorem 3.8 All models are standard.

Proof. We show that any model A is s-standard for all s € S, by induction on S. The base case
¢ is immediate, so suppose that the result holds for sorts s; and 8’ = s3 — -+ — s, — ¢. We use
lemma 3.3 to show that A is 51 — s’-standard.

(i) Suppose ay, az € A7 _
fi,fo € AL by fi(z1, . 2m) = aiz1 oo @y, Then fi < fo, and thus ﬁ is represented by f;
for i = 1,2 and fl c j;, by lemma 3.7. But a; is also represented by f; for ¢ = 1,2, and thus

forsomen € w and a1 x C as x for all x € A;,. Define total functions

a; = f1 C fo = as,



as required.

(ii) If f € As, = A,y is isolated, then f = ., f for some n € w, so that fz = ¥y, - (f(VF, -z))
for all € A;,. Define a total function f' € A7 by f'(z1,...,2m) = (f21) 22- - - zp. Then
jA” € A} _ s is represented by f’ (lemma 3.7), and it is easy to show that

(fx1)~xz~~~~~xm:f’~x1~~~~~xm

for all x; € AY,. But this implies that fz = jA” -x for all # € A7 | and thus that fx = jA” - x for all

s19

x € A;,, as required. O
Corollary 3.9 The continuous function model is, up to order-isomorphism, the unique model.

Proof. Immediate from theorem 3.8 and proposition 3.1. O
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