Mechanizing Logical Relations*

Allen Stoughton'
Department of Computing and Information Sciences
Kansas State University
Manhattan, KS 66506, USA

E-mail: allen@cis.ksu.edu

Abstract. We give an algorithm for deciding whether there exists a definable element of a finite
model of an applied typed lambda calculus that passes certain tests, in the special case when
all the constants and test arguments are of order at most one. When there is such an element,
the algorithm outputs a term that passes the tests; otherwise, the algorithm outputs a logical
relation that demonstrates the nonexistence of such an element. Several example applications
of the C implementation of this algorithm are considered.

1 Introduction

Given a model of an applied typed lambda calculus, it is natural to consider the problem of deter-
mining whether an element of that model is definable by a term, or, more generally, of determining
whether there exists a definable element of the model that passes certain tests. One approach to
settling such questions makes use of so-called “logical relations” [Plo80].

Building on recent work on logical relations by Sieber [Sie92], we give an algorithm for deciding
whether there exists a definable element of a finite model that passes certain tests, in the special
case when all the constants and test arguments are of order at most one. When there is such an
element, the algorithm outputs a term that passes the tests; otherwise, the algorithm outputs a
logical relation that demonstrates the nonexistence of such an element. Loader’s recent proof of the
undecidability of the lambda definability problem [Loa94] shows that the restriction to constants
and test arguments of order at most one is necessary. (Specifically, Loader shows the undecidability
of the problem of determining the definability of order-three elements of the full type hierarchy over
a seven element set.)

The algorithm was first implemented in Standard ML and used to find an interesting non-
definability proof (see Lemma 4.16 of [JS93]). An efficient implementation of the algorithm in ANSI
C has now been written and applied to various definability problems, some examples of which are
described below. A copy of this program, Lambda, along with supporting documentation and a
number of example lambda definability problems, can be obtained by anonymous ftp. Connect to
ftp.cis.ksu.edu, login as anonymous, change directory to pub/CIS/Stoughton/lambda, retrieve
the file README, and follow the instructions given in that file.

2 The typed lambda calculus

This section consists of the mostly standard definitions concerning the syntax and semantics of the
typed lambda calculus that will be required in the sequel. An introduction to the typed lambda

*A corrected version of the paper that appears in Ninth International Conference on the Mathematical Foundations
of Programming Semantics, Lecture Notes in Computer Science, vol. 802, pp. 359377, Springer-Verlag, 1994. (See
the footnote on p. 2 for the single correction.)

tThe research reported here was partially supported by ESPRIT project CLICS-1I and was performed while the
author was on the faculty of the School of Cognitive and Computing Sciences of the University of Sussex.

calculus can be found, e.g., in [Mit90].

The set of types T 1s least such that

(i)teT,

(iyo—=rTeTifoeTand reT.

We let — associate to the right. The order ordo € w of a type ¢ € T is defined by ord: = 0 and
ord(c—7) = the maximum of 1+ord & and ord 7. The arity ar o € w of a type o is defined by ar¢ = 0
and ar(c—71) = l+arr. Thus,ifn > 0 and o; € T for all i € n, then ord(cg—- = op_1—2¢) = 1+
the maximum of {orde; |i €n} and ar(og— -+ = op1 =) = n.

Define ", for n € w, by: ¢° = 0 and ¢"t! = ¢ — ¢". Thus, for alln €w, ar0” = n + arc and
ordo™ i1s ord o, if n = 0, and is 1 + ord o, otherwise. It is easy to see that ¢ has order at most one
just when it is of the form ” for some n € w.

Many operations and concepts extend naturally from sets to T-indexed families of sets, in a
pointwise manner. For example, given an ordinal a, an a-ary relation R(_y over a T-indexed family
of sets A(_y is a T-indexed family of a-ary relations R, over A,. We will make use of this and other
such extensions without explicit comment. We sometimes confuse a T-indexed family of sets A with
UO‘ET AU .

V' is a T-indexed family of disjoint, denumerable sets of variables. A family of constants C'is a
T-indexed family of disjoint sets. We say that such a C'is finite iff | J, . C, is finite, and that C' is
infinite otherwise. The order ord C' € w U {00} of C' is the greatest element of {orde | o € T and
Cy # 0} if it exists, and oo otherwise.

The family A(C') of typed A-terms over a family of constants C' is least such that

(i) e € A(C)y if c € Cy,

(ii) z € A(C)y if 2 € V5,

(i) M N e A(C); it M € A(C)o7 and N € A(C),,

(iv) de. M € A(Cor if 2 €V, and M € A(C);.

We call a term M N an application and a term Az. M an abstraction. We let application associate to
the left, and abbreviate Azg. - Awp_1. M to Axg - 2p_1. M. (When n =0, Aeg---2p_1. M = M)
The set of free variables fv M € P(J,er Vo) of a term M € A(C) is defined by fve =0, fvae = {z},
V(MN)=fvMUfvN and fv(dz. M) =fv M — {z}. A term M € A(C) is closed iff fv M = @, and
open otherwise.

We write T'(C) for the family of A-free terms over C: T(C)e = {M € A(C)s | M is Afree }.
The depth depth M € w of a A-free term M is defined by depth ¢ = depth # = 0 and depth(M N) =
the maximum of depth M and 1 + depth N. The size size M € w of a A-free term M is defined by
size ¢ = size x = 1 and size(M N) = size M +size N. Thus, ifn > 0, 0; € T forall i € n, M; € T(C)o,
for all ¢ € n and d is a constant or variable of type og—- =01 —¢, then depth(d My -+ Mp_1) =
14+ the maximum of { depth M; | i € n } and size(d My -+ Myp_1) = 1 + size My + - - - + size M.

We write f a for the application of a function f to an argument a, and let function application
associate to the left. The set of all functions from a set A to a set B is denoted by A — B, and —
associates to the right.

A type frame A is a T-indexed set such that A, £ @ foralloc € T Land A, , C A, — A; for all
o,7 € T. We say that such an A is finite iff A, is finite, and that A is infinite otherwise. The set
Env, (or just Env) of environments over A consists of the set of all type-respecting functions from
UaeT V, to UaeT As. If p € Env, a € A, and « € V,, then p[a/z] € Env is the environment that

I This reads A, # @ in the published version of the paper.

sends z to a, and sends all y # x to py. We write Semy (or just Sem) for the T-indexed family of
sets defined by Sem, = Env — A,.

A A(C)-model A consists of a type frame A, together with an element c4 € A, for each ¢ € Cy,
such that the following recursive definition of the meaning [M] € Sem, of a term M € A(C), is
well-defined:

[clp = ca
[x]p = p=
[M N]p = (IM]p)([N]p)

[Ae. M] pa

[M]pla/).

When M is closed, we often write [M] for [M]p, where p € Env is arbitrary. An element a € A, is
definable iff there exists a closed term M € A(C), such that a = [M]. We say that A is finite iff A
is finite, and that A is infinite otherwise.

Our example model in the sequel will be the monotone function model of Finitary PCF': the re-
striction of PCF [Plo77] to the booleans. We write FPCF for the family of constants such that
FPCF, = {Q,tt, T}, FPCF,: = If, and FPCF, = 0 for all other o € 7', and define a finite A(FPCF)-
model F as follows. F, is the poset {L,tt, I}, where L is C the incomparable elements tt and ff,
and Fy_, . is the set of all monotonic functions from F, to F;, ordered pointwise (fC g iff fa Cga
for all a). We then set Qr = L, ttr = tt, ffz = ff and define If 7 by

L oifx=1,
freyz=<¢ y ifz=1t,
z ifx=A1f.

One shows that the meaning function for F is well-defined by ordering Env g pointwise and showing
by induction on M that [M] is both well-defined and monotonic.

3 Definability

We now consider the problem of determining whether an element of a A(C')-model is definable, or,
more generally, of determining whether there exists a definable element of a A(C')-model that passes
certain tests. For example, we can ask whether the “parallel or” operation of the A(FPCF)-model
F is definable, i.e., whether there exists a closed term M of type ¢? such that

[M] tt L = tt
[M] L tt = tt
[M] & & = ff.

One approach to settling such questions makes use of so-called “logical relations” [Plo80]. Tt is
easier to say what logical relations are if we first extend function application from elements of type
frames to tuples of elements of type frames; in a componentwise manner. Suppose A is a type frame,
«is an ordinal and o, 7 € T. If X = (@) € Aoy | AE a)and YV = (yn € As | A € a), then we
define the application XY of X to Y to be (zays € A | A €), and let X Y associate to the left.
Given an a € A,, we sometimes write a for (a | A € a) € AZ.

An a-ary logical relation R over a type frame A is an a-ary relation over A such that X € R,_,,
iff XY € R; forall Y € R,. We say that an a-tuple X € A salisfies such an R iff X € R,.
An a-ary logical relation R over a A(C)-model A is an a-ary logical relation over A such that c4
satisfies R for all ¢ € C'.

The following theorem and its corollary show why logical relations are useful for showing non-
definability results.

Theorem 3.1 (Plotkin) If R is an a-ary logical relation over a A(C)-model A, then [M] satisfies
R for all closed M € A(C).

Proof. An easy induction on A(C) shows that, for all M € A(C), and py € Env for all A € «a, if
(prx|AN€a)ye R, forallz eftvM NV, and 7 € T, then ([M]pr | A €) € R,. The result then
follows immediately. O

Corollary 3.2 Let A be a A(C)-model, A; € AF, for alli € m, X € AY and R be an a-ary logical
relation over A, for m € w and an ordinal «v. If R is satisfied by A; for all ¢ € m but is not satisfied
by X, then there is no definable a € Agy—s...o50,,_1— sSuch that a Ay -+ Apy—1 = X

Proof. Immediate from Theorem 3.1. O

We can, e.g., use Corollary 3.2 to prove Plotkin’s result [Plo77] that parallel or is not definable
in Finitary PCF. (Although the following proof is due to Plotkin, he never published it. It was
recently rediscovered by Sieber [Sie92].) Define argument tuples A; € F? for all i € 2 and a result
tuple X € F? by taking Ag = (tt, L, fT) (the first argument column of the display at the beginning of
this section), Ay = (L, tt,ff) (the second argument column of that display) and X = (tt, tt, ff) (the
result column of that display). Let R be the ternary logical relation over F' such that (z,y,z) € R,
iff t =y=zoroneof zoryis L. Itiseasy toshow that R is satisfied by the interpretations of €,
tt, ff and If. But R 1s satisfied by Ay and A; but not by X, allowing us to conclude that there is
no definable f € F,2 such that f Ay Ay = X.

Loader’s recent proof of the undecidability of the lambda definability problem [Loa94] shows that
Corollary 3.2 fails to provide a complete method for showing non-definability (and thus definability)
results. However, a slight generalization of Theorem 4.1 of [Sie92] shows that it does provide a
complete method in the special case where the orders of €' and the o’s are at most one (cf.,

Theorem 1 of [Plo80] and Theorem 5 of [JT93]).

Definition 3.3 Suppose A is a A(C)-model and A = (A; € AS, | i € m), for m € w and an ordinal
« and where C and the o;’s have order at most one. Then, R(A) is the a-ary logical relation over

A such that X € R(A), if aAg -+ Ayym1 = X for some definable a € Agysi o,y 50

Lemma 3.4 (Sieber) Suppose A is a A(C)-model and A = (A; € A, |i € m), form € w and an
ordinal & and where C' and the o;’s have order at most one. Then, R(A) is an a-ary logical relation
over A that is satisfied by A; for all i € m.

Proof. Suppose that ¢ € Cpn. If Yy, ..., Y_1 € R(A),, then there are closed terms My, ..., M,_1
of type 69 = - -+ — 0p—1 — ¢ such that [M;]Ap - Ap_q1 =Y for all j € n. Then, the term

M:Axo...xm_l.c(Moxo ...xm_l) (Mn_lxo ...xm_l)

of type o9 — -+ — 0p_1 — ¢ 18 such that
[M]Ag - Aoy =caYo - Yoo,

showing that ¢4 Yy - - Y1 € R(A),. Thus c4 satisfies R(A). The proof that A; satisfies R(A) for

all i € m is almost identical (z; is used in the term M instead of ¢). O

Theorem 3.5 (Sieber) Suppose A is a A(C)-model, A = (A; € A7 | i € m) and X € A}, for
m € w and an ordinal o and where C' and the o;’s have order at most one. Then, a Ay --- A1 = X
for some definable a € Asys...os0,,_,—. Uff every a-ary logical relation over A that is satisfied by A;
for all i € m is also satisfied by X .

Proof. Immediate from Corollary 3.2 and Lemma 3.4. O

Although Theorem 3.5 gives a characterization of R(A),, the fact that this characterization
involves the universal quantification over all a-ary logical relations over A that are satisfied by
the A; limits its practical utility. It turns out, however, that we can give a much more direct
characterization of R(A),.

Definition 3.6 Suppose A is a A(C)-model and A = (A; € AZ, | i € m), for m € w and an ordinal
« and where C' and the o;’s have order at most one. Then, L(A) is the a-ary logical relation over
A such that L(A), is the least a-ary relation over A, that is closed under ¢4, for all ¢ € C| and A;,
for all ¢ € m, where the c4’s and A;’s are viewed as operations over A™ in the obvious way.

Lemma 3.7 Suppose A is a A(C)-model and A = (A; € A7 |i € m), form € w and an ordinal
a and where C' and the ;s have order at most one. Let x; € V,,, for all i € m be distinct variables.

(1) Suppose that ¢ € Cin, Yo,..., Y1 € AY and My, ..., M,_1 € T(C),. If tvM; C
{@o, ..., &m-1} and

[[Al‘()"'l‘m_l.Mj]] Ao Am—l = Y]

for all j € n, then the A-free term M = ¢ My - -+ Mn_1 of type ¢ is such that v M C {aq, ..., &m-1}
and
[[Al‘()' . 'l‘m_l.M]] Ao s Am—l =CA YO s Yn—1~

(i) Suppose that i € m, Yy, ..., Yarg,o1 € AY and My, ..., Muo,—1 € T(C),. If tvM; C

{@o, ..., &m-1} and

[[Al‘o . 'l‘m_l.Mj]] Ao s Am—l = Y]
for all j € aro;, then the A-free term M = z; My - Maro,—1 of type ¢ 1s such that fv M C

{@o, ..., &m-1} and
[Aeg - @1 M]Ag -+ A1 =AYy -+ Yaro, 1.
(i) For all X € L(A),, there is an M € T'(C), such that fv M C {xg,...,2m-1} and
[Aeg - @pme1. M| Ap - Ay = X

Proof. (i) and (ii) are immediate, and (iii) follows from (i) and (ii) by induction on L(A),. O

Lemma 3.8 Suppose A is a A(C)-model and A = (A; € A7 |i € m), form € w and an ordinal
« and where C and the o;’s have order at most one. Then, L(A) = R(A).

Proof. L(A) is clearly an a-ary logical relation over A that is satisfied by A; for all ¢ € m, and
L(A), C R(A), follows from Lemma 3.7 (iii). For the opposite inclusion, if X ¢ L(A),, then there
is no definable ¢ € A such that a Ag --- Ay,—1 = X, by Corollary 3.2, and thus X ¢ R(A),. O

Theorem 3.9 Suppose A is a A(C)-model, A = (A; € Ay | i €m) and X € A}, for m € w and
an ordinal a and where C' and the o;’s have order at most one. Then, a Ag -+ Apu_1 = X for some

definable a € Agys... 50,1 f X € L(A),.
Proof. Immediate from Lemma 3.8. O
Theorem 3.9 and Lemma 3.7 suggest the following algorithm schema.

Algorithm Schema 3.10 Inputs. A finite family of constants C' of order at most one, m,a € w,
types 0g,...,0m—1 of order at most one, a finite, nonempty set A,, c4 € A,» for each ¢ € Cinr,
A=(A; € A7 |i€m)and X € AY, where we extend A, to a type frame A by taking A,_,, to be
the set of all functions from A, to A, for all o, 7€ T.

Initialization. Pick distinct variables #; € V,,, for all 7 € m. Initialize the stage k € w to 0. Let
Z CU be
{{eca,)| ceC,YU{{(A;, ;) |i€emand oy =1},

where U is set of all pairs (Y, M) such that Y € A* M € T'(C), and fvM C {xo,...,Zm-1}.
Initialize the state S C U to a subset of Z that is a function with domain dom Z. (The particular
subset chosen 1s left unspecified, as is the method used to compute that subset; it need not involve
the construction of 7.) If (X, M) € S for some term M, then terminate with & and the term
Al‘o "'l‘m_l.M.

Loop. Let 7 = 71 U Zs, where 77 C U is the set of all
(eaYo - Yoo1, c My -+ Mp_1)
such that ¢ € Cyn, n > 0 and (Y;, M;) € S for all j € n, and Z, C U is the set of all
(A Yy -+ Yaro,—1, @i My -+ Maro,—1)

such that ¢ € m, aro; > 0 and (Y;, M;) € S for all j € aro;. Pick a subset S of Z such that S’
is a function with domain dom 7 — dom .S and () (Y, M) € S" implies that size M < size N for all
N that are paired with Y in Z. (The particular subset chosen is left unspecified, as is the method
used to compute that subset; it need not involve the construction of Z, Z; or Zs.) If 5" = @, then
terminate with & and dom S. Otherwise, increment k& by one and add the elements of S’ to S. ()
If (X, M) € S for some term M, then terminate with & and the term Azg - 2p—1. M. Otherwise,
repeat.

An nstance of Algorithm Schema 3.10 is an algorithm formed from the schema by specifying the
details that were left open. Condition () is included since experience suggests that this will ensure
that instances of the schema will generate good quality terms. Theorem 3.11 doesn’t depend upon
(1) being included, however.

Theorem 3.11 If we supply the required inputs to an instance of Algorithm Schema 3.10, then one
of the following statements holds.

(i) The algorithm terminates with a stage | and a closed term of the form Axg- - &m_1.M,
for distinct variables x; € V,, and a A-free term M of type ¢+ and depth I. Let B be any
A(C)-model such that B, = A, ¢cg = ca for all ¢ € C, and A; € B, for all i € m.
Then, [Axg - &m_1. M]Ag -+ App—1 = X. Furthermore, if N € T'(C), is such that fvN C
{20, ..., &m_1} and [Aaxg- - @m_1. N]Ap -+ Ap—y = X, then depth M < depth N.

(i1) The algorithm terminates with a stage | and an a-ary relation Q) over A, such that X & Q).
If B is a A(C)-model with the above properties, then @@ = L(A),, so that there is no definable b € B
such that bAg -+ A1 = X.

Proof. Let Sy be the initial value of S, and Sj, for I > 1, be S’s value when point (1) is reached for
the [th time (at which point k’s value will be /; S; is undefined if the algorithm terminates before
(1) has been executed ! times). Then, the following properties hold (for (d)-(f), B is a A(C')-model
with the properties specified in the theorem’s statement):

(a) If S; is defined, then S is a function.

(b) If Sj41 is defined, then it is a proper superset of S;.

(c) If S; is defined, (Y, M) € S; and either [=0 or Y ¢ dom S;_1, then depth M = {.

(d) If S is defined, then dom S; C L(A),.

(e) If S; is defined and (Y, M) € Sy, then [Azg - @m1. M]Ag -+ A1 =Y.

(f) If S; is defined, M € T(C),, tvM C {xg,...,2m—1} and depthM = [then
[Aeo - @pme1. M]Ag -+ Ay € dom S;.

The proofs of properties (a), (d) and (e) are by induction on /, and Lemma 3.7 (i) and (ii) are
used in (e)’s proof. The proof of (b) is obvious.

For (c), we use a course of values induction on [. We consider the case where M has the form
¢My -+ My_1 (the case where M has the form #; My -+ Maro,—1 is similar). If { = 0, then n = 0,
and thus depth M = depth ¢ = 0. So, suppose that [> 0, so that ¥ & dom S;_;. Then, n > 0 and
there are Y; € A for all j € n such that (Y;, M;) € S;_; forall j e nand Y = ca ¥y - Y1,
Let the stages p; < [for all j € n be such that Y; € dom.S,; and either p; = 0 or Y; ¢ dom .S, _;.
Then, depth M; = p; for all j € n, by the inductive hypotheses for the p;’s, so that depth M < [.
But, there must be a j € n such that p; = — 1, since otherwise ¥ € dom .S;_;. Thus, depth M = [.

The proof of (f) also proceeds by course of values induction on [, and, again, we con-
sider the case where M has the form e¢My --- M,_y. If [= 0, then n = 0, and thus
[Aeg - @pme1.- M]Ag - App—y = ca € domS;. So, suppose that { > 0, so that n > 0. Let
p; <land Y; € AY for all j € n, be depth M; and [Azg - 2m_1. M;] Ap - -+ Apy_q, respectively.
Then, by the inductive hypotheses for the p;’s, we have that Y; € dom S, for all j € n, so that
caYy - Ypo1 €domS;. But [Azg-- @mo1. M] Ay - Aoy = ca Yy -+ Y1, by Lemma 3.7 (i),
and thus we are done.

From (a) and (b) and the fact that there are only finitely many a-tuples over A,, we can conclude
that there is a largest [such that S; is defined.

Suppose (X, M) € S; for some M, so that either { = 0 or X ¢ domS;_; (otherwise, S
would be undefined). Then, the algorithm terminates with a stage of [and the closed term
Azg - &m—1.M, and depth M = [follows by (c). Let B be a A(C)-model satisfying the specified
conditions. Then, [Azg- - #m_1. M]Ag --- Apy—1 = X by (e). Furthermore, if N € T'(C), is such

Figure 1: Lambda definability problems

problem — iota_sect funs_sect cons_sect lests_sect
iota_sect — iota Elem { Elem }
funs_sect — functions { fun }
fun — Pun clause { clause }
clause — pat { pat } = result
pat — Elem | Var | _
result — Flem | Var
cons_sect — constants { con }
con — FElem | Fun
tests_sect — tests test { test }
test — {test_arg } = test_result
test_arg — Elem | Fun
test_result — Elem

that fv N C {@o,...,&m-1} and [Azo- - @m_1. NJAg -+ A1 = X, then depth M < depth N
since otherwise (f) would imply that X € dom Sy for some I’ < [.

Otherwise, X ¢ dom S;, and thus the algorithm terminates with a stage of [and dom S;. Let
B be a A(C)-model satisfying the specified conditions. By (d) and the fact that S;y; is undefined,
we have that dom S; = L(A),. Thus, there is no definable b € B such that bAg -+ Aoy = X, by
Theorem 3.9. O

Although instances of Algorithm Schema 3.10 always produce terms of minimal depth, they often
fail to produce terms of minimal size. In fact, it is not hard to find an example of a pair of terms
with identical depth and meaning, where the first term is produced by a schema instance and the
second has strictly smaller size than the first (see the lambda definability problem size.lam that is
included with Lambda’s distribution).

4 Implementation

In this section, we describe an implementation, Lambda, of an instance of Algorithm Schema 3.10,
and give several examples of its use. Lambda doesn’t carry out the algorithm’s steps itself. Instead,
it takes in a lambda definability problem, representing the algorithm’s input data, and generates a
C program that solves this problem, producing the algorithm’s output.

The grammar in Figure 1 describes the syntax of lambda definability problems. In this grammar,
curly brackets are used to denote repetition (zero or more occurrences of the phrases they surround).
An element name, Elem, consists of a single upper case letter or digit. A function name, Fun, consists
of an upper case letter, followed by one or more letters or digits. A variable name, Var, consists

of a lower case letter, followed by zero or more lower case letters or digits. As usual, white space
characters and comments (which begin with # and continue until end of line) separate tokens but
are otherwise ignored.

A lambda definability problem has four sections. The iota section lists the elements of the set
A,—the elements that exist at type ¢.

The functions section defines zero or more first-order functions, using ML-style pattern matching.
Each function definition consists of the function’s name followed by a sequence of clauses, each of
which must have the same number of patterns in its left hand side. A given variable may not appear
twice in the left hand side of the same clause, and, if the right hand side of a clause is a variable,
then that variable must appear in the left hand side of that clause.

Suppose that the body of a given function definition has the form

Py Py = 70
-1 -1 -
pg pZz—l = pn—L
A clause j matches a sequence of argument elements ag, . . ., a,,—1 iff, for all ¢ € m, the pattern p‘g 18

the wildcard _ or is a variable or is equal to a;. The function definition must be completely specified in
the sense that it has at least one clause that matches any given sequence of arguments. Furthermore,
each of its clauses must be non-redundant in the sense that the clause matches some sequence of
elements that isn’t matched by any preceding clause in the definition. The function defined by the
function definition is the element of A,» that sends a sequence of arguments ag, ..., ¢p_1 to 9, if
clause j is the first clause that matches the argument sequence and #/ is an element, and sends the
argument sequence to a;, if clause j is the first clause that matches the argument sequence, ¥ is a
variable and p‘g =,

The constants section specifies the family of constants C, and thus the functions ¢4 for ¢ € C.

Finally, the tests section must have the form

Ag Agn_l = X0
Agc—l . Aoc—ll = Xoc—l
— .
It implicitly specifies the natural numbers m and «, the types og,...,0m_1, the argument tuples

Ag € AY ...,Am_l EAgm

og)

_, and the result tuple X € A/, The number of tests, a, is required to
be non-zero, since otherwise a method of explicitly specifying the types o; would have to be devised.

Lambda 1s written in ANSI C, with the exception of its lexical analyzer and parser, which are
written in Lex and Yacc source, respectively. It uses one UNIX System V system call. The C
programs that it generates also conform to the ANSI standard; they use several UNIX System V
system calls in order to implement checkpointing. The programs generated by Lambda make no use
of dynamic storage allocation (except during their initialization phases).

A program generated by Lambda codes tuples of elements as integers, and represents the algo-
rithm’s state as an array indexed by those codes. An element of this array records (among other
things) whether the tuple coded by its index has been found. If it has, the way in which it was
constructed from previously produced tuples is also recorded; implicit in this information is a term
that computes the tuple from the argument tuples. When a new tuple is found during a given

stage of the closure process, its element of the array is updated to record this fact, but new tuples
are distinguished from existing tuples until the stage’s end. New tuples are produced by n nested
for loops over the tuple codes, where n is the greatest number of arguments that any constant or
argument tuple expects. When a given new tuple can be formed in multiple ways, the first way
found whose implicit term has minimal size is selected.

Figure 2 contains our first example lambda definability problem (in the left column), along with
its solution (in the right column). The comment indicates that this problem is contained in the file
poril.lam that is included as part of Lambda’s distribution. We think of B, T and F as standing
for the elements L, tt and ff,| respectively, of the monotone function model F of Finitary PCF.
The occurrence of B in the constants section stands for the constant €2 of Finitary PCF, which is
interpreted as L in F. The problem is to determine whether parallel or is definable in models of
Finitary PCF that consist of {L,tt, I} at type ¢ and in which the constants are interpreted in the
same way as in F (it will either be definable in all or no models of this sort).

Applying Lambda to porl.lam generates a C program that carries out the algorithm’s closure
process, producing the relation listed in the figure. The stage of one indicates that it took only one
stage of this process for the relation to stabilize, and 1t is easy to see that this relation is the one
used to show the non-definability of parallel or in the preceding section. (A triple (z,y, z) is in the
relation iff # = y = z or # = L or y = L.) Note that the result triple (tt, tt, ff) is in the complement
of the relation.

Figure 3 shows that parallel or remains non-definable when parallel convergence is added to
Finitary PCF (the original proof of this result can be found in [Abr90]). This time the C program
produced by Lambda was run in verbose mode, with the consequence that the elements of the
resulting relation are labeled with the stages at which they were found. The relation contains two
more triples than does the relation of Figure 2: (tt, tt, L) (found at stage 2) and (ff, ff, L) (found at
stage 3).

Figure 4 shows how a non-definability result from Proposition 4.4.2 of [Cur93] can be proved
using logical relations. The resulting relation consists of those triples (z,y, z) such that x = y = 2
or one of z, y or z i1s L. Oddly, it can be formed by adding two triples to the relation of Figure 3.

Figure 5 shows how the Berry-Plotkin function (cf., Exercise 4.1.18.2 of [Cur93]) can be used to
separate Curien’s Ay, As and As. This time, the program produced by Lambda was run in both
ordinary (middle column) and verbose (right column) modes. The output indicates that the term

(the L’s have been replaced by €2’s) was found after two stages of the closure process. The verbose
version of the program’s output shows that the result triple (tt, ff, ff) became paired with the body
of H at stage 2 of the closure process since

(tt, fF, fF) = BP (L, tt, fF) (tt, fF, L) (fF, L, tt)

and the triples (L, tt, ff), (tt,ff, L) and (ff, L, tt) were paired with the terms zq Q tt ff, xo tt ff © and
z fT Q tt, respectively, at stage 1. Similarly, the triple (L, tt,ff) is paired with the term 2o Qttff at
stage 1 since

(Lt fF) = (A1, Ao, As) (L, L, L) (tt, tt, tt) (fF, fF, fF)

and the constantly L, tt and ff triples were paired with the terms 2, tt and ff at stage 0.

10

Figure 2: Non-definability of parallel or

porl.lam porl
iota Stage: 1
BTF Relation (17 elements):
functions <B B B>
<B B T>
IfB_ _ =B <B B F>
Tx_ =x <B T B>
F_y-= <B T T>
<B T F>
constants <B F B>
<B F T>
BTFIf <B F F>
<T B B>
tests <T B T>
<T B F>
TB=T <T T T>
BT=T <F B B>
FF=F <F B T>
<F B F>
<F F F>

Relation complement (10 elements):

<T T B>
<T T F>
<T F B>
<T F T>
<T F F>
<F T B>
<F TT>
<F T F>
<F F B>
<F F T>

11

Figure 3: Parallel or is not definable using parallel convergence

por2.lam por2

iota Stage: 3
BTF Relation (19 elements):

functions <BBB> O

<BBT> 1

IfB_ _ =B <BBF> 1

Tx_ =x <BTB> 1

F_y-= <BTT> 1

<BTF> O

PConv B B = B <BFB> 1

__=T <BFT> 1

<BFF> 1

constants <T B B> 1

<TBT> 1

B T F If PConv <T BF> O

<T T B> 2

tests <TTT> O

<F BB> 1

TB=T <FBT> 1

BT=T <FBF> 1

FF=F <F F B> 3

<FFF> O

Relation complement (8 elements):

<T T F>
<T F B>
<T F T>
<T F F>
<F T B>
<F TT>
<F T F>
<F F T>

12

Figure 4: The impossibility of separating Curien’s A;, As and As.

curienl.lam curienl
iota Stage: 2
BTF Relation (21 elements):

functions <B B B>

<B B T>

If B_ _ =B <B B F>

Tx _=x <B T B>

F_y=y <BT T>

<B T F>

A1l TF _ =T <B F B>

F_T=F <B F T>

___=B <B F F>

<T B B>

A2 _TF=T <T B T>

TF_=F <T B F>

___=B <T T B>

<T T T>

ABF _T=T <T F B>

_TF=F <F B B>

___=B <F B T>

<F B F>

constants <F T B>

<F F B>

BTFIf <F F F>
tests Relation complement (6 elements):

A1 =T <T T F>

A2 = F <T F T>

A3 =F <T F F>

<F T T>

<F T F>

<F F T>

13

Figure 5: The Berry-Plotkin function can be used to separate A;, As and As.

curien3.lam curien3 curien3
iota Stage: 2 Stage: 2
BTF Term: Term:
functions lambda xO. lambda xO.
BP BP <T F F>
IfB_ _ =B x0 x0 <B T F>
Tx _ = B B <B B B>
F_y=y T T <T T T>
F F <F F F>
Al TF _=T x0 x0 <T F B>
F_T=F T T <T T T>
- -_-=8B F F <F F F>
B B <B B B>
A2 _TF=T x0 x0 <F B T>
TF_=F F F <F F F>
- -_-=8B B B <B B B>
T T <T T T>
ABF _T=T
_TF=F
- _-_-=8B
BPTF _=F
_TF=T
F_T=F
- _-_-=8B
constants
B TF If BP
tests
Al =T
A2 = F
A3 = F

14

As a final example, we consider the problem of determining whether there is a definable element
of type ¢3 = 1 of the monotone function model F of Finitary PCF that sends an argument z to tt,
if @ J A; for some 7, and sends x to L, otherwise. Since there are many elements of F;s that don’t
dominate any of the A;’s, Lambda can’t be used in a purely mechanical way to solve this problem.

One can, however, use Lambda to solve lambda definability problems that specify that cer-
tain hand-picked functions must be sent to L. A bit of experimentation (see curien4.lam and
curien5.lamin Lambda’s distribution) lead to the problem of Figure 6, which specifies that parallel
or, parallel and, and their “negations” should be sent to L. Running the program generated from
this problem by Lambda takes a considerable amount of time (about eight hours of cpu time on a
Sun 690MP) and produces the term Azg. G, where

=xoLMN
= I Z(IfY Qff) (If X tt Q)
= I X (If 7 Qff) (If Y t£ Q)
= IfY (If X Qff) (If Ztt Q)
= zottff Q
= xgQttff
= zo Ml Qtt.

N~ 2R N Q

By considering the possible values of X, Y and 7| it is straightforward to show that G produces
tt iff 29 dominates one of the A;’s or is the constantly tt function. Furthermore, the term Axg. H,
where

H=2oMNTL,

is produced as the solution of the variation of this problem (called curien7.lamin Lambda’s distri-
bution) that specifies that the A;’s should be sent to ff rather than to tt, and H produces ff iff zg
dominates one of the A;’s or is the constantly ff function. Thus, it is easy to see that the term

Q = Aao. If G (If H Q) Q

solves the problem of sending an argument to tt, when it dominates one of the A;’s, and sending
the argument to L, otherwise.

Interestingly, I wasn’t able to generate such a term as the solution to a single lambda definability
problem. One obstacle to my doing so was the necessity of employing at most seven tests, since it
would take weeks rather than hours to solve a problem with eight tests. In any event, there is no
chance of producing @) itself in such a way, since its body has depth six and there i1s another known
solution to the problem whose body has depth five.

Acknowledgments

It is a pleasure to acknowledge many fruitful discussions with Achim Jung. Conversations with
Antonio Bucciarelli, Shai Geva, Alan Jeffrey, Ralph Loader and Edmund Robinson were also helpful.

15

Figure 6: Synthesis of a term sending the A’s to tt and parallel or, parallel and, and their negations
to L.

curien6.lam PAnd TTT-=T
F__=F
iota _F_=F
__F=F
BTF ___=8B
functions NPANd TTT =F
F__=T
IfB_ _=8B _F_=T
Tx _=x __F=T
F_y=y _ _ _=B
AMlTF _=T constants
F_T=F
_ __=B8B BTF If
A2 _TF=T tests
TF_=F
_ __=B8B Al =T
A2 =T
ABF _T=T A3 =T
_TF=F POr =B
_ __=8B NPOr =B
PAnd =B
POr FFF =F NPAnd = B
T __=T
T=T
__T=T
_ __=B8B
NPOr FFF =T
T __=F
T=F
__T=F
=B

16

References

[Abr90]

[Cur93]

[7593]

[JT93]

[Loa94]

[Mit90]

[Plo77]

[P1o80]

[Sie92]

S. Abramsky. The lazy lambda calculus. In D. L. Turner, editor, Research Topics in
Functional Programming, pages 65—116. Addison-Wesley, 1990.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.
Progress in Theoretical Computer Science. Birkhauser, 1993.

A. Jung and A. Stoughton. Studying the fully abstract model of PCF within its continuous
function model. In M. Bezem and J. F. Groote, editors, International Conference on Typed
Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages
230-244. Springer-Verlag, 1993.

A. Jung and J. Tiuryn. A new characterization of lambda definability. In M. Bezem and
J. F. Groote, editors, International Conference on Typed Lambda Calcult and Applications,
volume 664 of Lecture Notes in Computer Science, pages 245-257. Springer-Verlag, 1993.

R. Loader. The undecidability of A-definability. In M. Zeleny, editor, The Church Festschrift.
CSLI/University of Chicago Press, 1994.

J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 8, pages 367-458. Elsevier
Science Publishers, 1990.

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5:223-256, 1977.

G. D. Plotkin. Lambda-definability in the full type hierarchy. In J. Seldin and J. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 363-374. Academic Press, 1980.

K. Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science,
volume 177 of LMS Lecture Note Series, pages 258-269. Cambridge University Press, 1992.

17

