
Mechanizing Logical Relations�Allen StoughtonyDepartment of Computing and Information SciencesKansas State UniversityManhattan, KS 66506, USAE-mail: allen@cis.ksu.eduAbstract. We give an algorithm for deciding whether there exists a de�nable element of a �nitemodel of an applied typed lambda calculus that passes certain tests, in the special case whenall the constants and test arguments are of order at most one. When there is such an element,the algorithm outputs a term that passes the tests; otherwise, the algorithm outputs a logicalrelation that demonstrates the nonexistence of such an element. Several example applicationsof the C implementation of this algorithm are considered.1 IntroductionGiven a model of an applied typed lambda calculus, it is natural to consider the problem of deter-mining whether an element of that model is de�nable by a term, or, more generally, of determiningwhether there exists a de�nable element of the model that passes certain tests. One approach tosettling such questions makes use of so-called \logical relations" [Plo80].Building on recent work on logical relations by Sieber [Sie92], we give an algorithm for decidingwhether there exists a de�nable element of a �nite model that passes certain tests, in the specialcase when all the constants and test arguments are of order at most one. When there is such anelement, the algorithm outputs a term that passes the tests; otherwise, the algorithm outputs alogical relation that demonstrates the nonexistence of such an element. Loader's recent proof of theundecidability of the lambda de�nability problem [Loa94] shows that the restriction to constantsand test arguments of order at most one is necessary. (Speci�cally, Loader shows the undecidabilityof the problem of determining the de�nability of order-three elements of the full type hierarchy overa seven element set.)The algorithm was �rst implemented in Standard ML and used to �nd an interesting non-de�nability proof (see Lemma 4.16 of [JS93]). An e�cient implementation of the algorithm in ANSIC has now been written and applied to various de�nability problems, some examples of which aredescribed below. A copy of this program, Lambda, along with supporting documentation and anumber of example lambda de�nability problems, can be obtained by anonymous ftp. Connect toftp.cis.ksu.edu, login as anonymous, change directory to pub/CIS/Stoughton/lambda, retrievethe �le README, and follow the instructions given in that �le.2 The typed lambda calculusThis section consists of the mostly standard de�nitions concerning the syntax and semantics of thetyped lambda calculus that will be required in the sequel. An introduction to the typed lambda�A corrected version of the paper that appears in Ninth International Conference on the Mathematical Foundationsof Programming Semantics, Lecture Notes in Computer Science, vol. 802, pp. 359{377, Springer-Verlag, 1994. (Seethe footnote on p. 2 for the single correction.)yThe research reported here was partially supported by ESPRIT project CLICS-II and was performed while theauthor was on the faculty of the School of Cognitive and Computing Sciences of the University of Sussex.1

calculus can be found, e.g., in [Mit90].The set of types T is least such that(i) � 2 T ,(ii) �! � 2 T if � 2 T and � 2 T .We let ! associate to the right. The order ord� 2 ! of a type � 2 T is de�ned by ord � = 0 andord(�!�) = the maximum of 1+ord � and ord � . The arity ar� 2 ! of a type � is de�ned by ar � = 0and ar(�!�) = 1+ar � . Thus, if n > 0 and �i 2 T for all i 2 n, then ord(�0!� � �!�n�1!�) = 1+the maximum of f ord�i j i 2 n g and ar(�0! � � �! �n�1 ! �) = n.De�ne �n, for n 2 !, by: �0 = � and �n+1 = �! �n. Thus, for all n 2 !, ar�n = n+ ar� andord�n is ord�, if n = 0, and is 1 + ord�, otherwise. It is easy to see that � has order at most onejust when it is of the form �n for some n 2 !.Many operations and concepts extend naturally from sets to T -indexed families of sets, in apointwise manner. For example, given an ordinal �, an �-ary relation R(�) over a T -indexed familyof sets A(�) is a T -indexed family of �-ary relations R� over A� . We will make use of this and othersuch extensions without explicit comment. We sometimes confuse a T -indexed family of sets A withS�2T A�.V is a T -indexed family of disjoint, denumerable sets of variables. A family of constants C is aT -indexed family of disjoint sets. We say that such a C is �nite i� S�2T C� is �nite, and that C isin�nite otherwise. The order ordC 2 ! [f1g of C is the greatest element of f ord� j � 2 T andC� 6= ; g if it exists, and 1 otherwise.The family �(C) of typed �-terms over a family of constants C is least such that(i) c 2 �(C)� if c 2 C�,(ii) x 2 �(C)� if x 2 V� ,(iii) M N 2 �(C)� if M 2 �(C)�!� and N 2 �(C)�,(iv) �x:M 2 �(C)�!� if x 2 V� and M 2 �(C)� .We call a termM N an application and a term �x:M an abstraction. We let application associate tothe left, and abbreviate �x0: � � ��xn�1:M to �x0 � � �xn�1:M . (When n = 0, �x0 � � �xn�1:M = M .)The set of free variables fvM 2 P(S�2T V�) of a term M 2 �(C) is de�ned by fv c = ;, fvx = fxg,fv(M N) = fvM [fvN and fv(�x:M) = fvM � fxg. A term M 2 �(C) is closed i� fvM = ;, andopen otherwise.We write �(C) for the family of �-free terms over C: �(C)� = fM 2 �(C)� j M is �-free g.The depth depthM 2 ! of a �-free term M is de�ned by depth c = depthx = 0 and depth(M N) =the maximum of depthM and 1 + depthN . The size sizeM 2 ! of a �-free term M is de�ned bysize c = sizex = 1 and size(M N) = sizeM+sizeN . Thus, if n > 0, �i 2 T for all i 2 n,Mi 2 �(C)�ifor all i 2 n and d is a constant or variable of type �0!� � �!�n�1!�, then depth(dM0 � � � Mn�1) =1 + the maximum of f depthMi j i 2 n g and size(dM0 � � � Mn�1) = 1 + sizeM0 + � � �+ sizeMn�1.We write f a for the application of a function f to an argument a, and let function applicationassociate to the left. The set of all functions from a set A to a set B is denoted by A!B, and !associates to the right.A type frame A is a T -indexed set such that A� 6= ; for all � 2 T 1 and A�!� � A�!A� for all�; � 2 T . We say that such an A is �nite i� A� is �nite, and that A is in�nite otherwise. The setEnvA (or just Env) of environments over A consists of the set of all type-respecting functions fromS�2T V� to S�2T A�. If � 2 Env, a 2 A� and x 2 V� , then �[a=x] 2 Env is the environment that1This reads A� 6= ; in the published version of the paper.2

sends x to a, and sends all y 6= x to � y. We write SemA (or just Sem) for the T -indexed family ofsets de�ned by Sem� = Env!A�.A �(C)-model A consists of a type frame A, together with an element cA 2 A� for each c 2 C�,such that the following recursive de�nition of the meaning [[M]] 2 Sem� of a term M 2 �(C)� iswell-de�ned: [[c]]� = cA[[x]]� = � x[[M N]]� = ([[M]]�)([[N]]�)[[�x:M]] � a = [[M]]�[a=x]:When M is closed, we often write [[M]] for [[M]]�, where � 2 Env is arbitrary. An element a 2 A� isde�nable i� there exists a closed term M 2 �(C)� such that a = [[M]]. We say that A is �nite i� Ais �nite, and that A is in�nite otherwise.Our example model in the sequel will be the monotone function model of Finitary PCF : the re-striction of PCF [Plo77] to the booleans. We write FPCF for the family of constants such thatFPCF� = f
; tt;�g, FPCF�3 = If, and FPCF� = ; for all other � 2 T , and de�ne a �nite �(FPCF)-model F as follows. F� is the poset f?; tt;�g, where ? is v the incomparable elements tt and �,and F�!� is the set of all monotonic functions from F� to F� , ordered pointwise (f v g i� f a v g afor all a). We then set
F = ?, ttF = tt, �F = � and de�ne IfF byIfF x y z = 8<: ? if x = ?;y if x = tt;z if x = � :One shows that the meaning function for F is well-de�ned by ordering EnvF pointwise and showingby induction on M that [[M]] is both well-de�ned and monotonic.3 De�nabilityWe now consider the problem of determining whether an element of a �(C)-model is de�nable, or,more generally, of determining whether there exists a de�nable element of a �(C)-model that passescertain tests. For example, we can ask whether the \parallel or" operation of the �(FPCF)-modelF is de�nable, i.e., whether there exists a closed term M of type �2 such that[[M]] tt ? = tt[[M]] ? tt = tt[[M]] � � = � :One approach to settling such questions makes use of so-called \logical relations" [Plo80]. It iseasier to say what logical relations are if we �rst extend function application from elements of typeframes to tuples of elements of type frames, in a componentwise manner. Suppose A is a type frame,� is an ordinal and �; � 2 T . If X = hx� 2 A�!� j � 2 � i and Y = h y� 2 A� j � 2 � i, then wede�ne the application X Y of X to Y to be hx� y� 2 A� j � 2 � i, and let X Y associate to the left.Given an a 2 A� , we sometimes write a for h a j � 2 � i 2 A�� .3

An �-ary logical relation R over a type frame A is an �-ary relation over A such that X 2 R�!�i� X Y 2 R� for all Y 2 R�. We say that an �-tuple X 2 A�� satis�es such an R i� X 2 R�.An �-ary logical relation R over a �(C)-model A is an �-ary logical relation over A such that cAsatis�es R for all c 2 C.The following theorem and its corollary show why logical relations are useful for showing non-de�nability results.Theorem 3.1 (Plotkin) If R is an �-ary logical relation over a �(C)-model A, then [[M]] satis�esR for all closed M 2 �(C).Proof. An easy induction on �(C) shows that, for all M 2 �(C)� and �� 2 Env for all � 2 �, ifh �� x j � 2 � i 2 R� for all x 2 fvM \ V� and � 2 T , then h [[M]]�� j � 2 � i 2 R�. The result thenfollows immediately. 2Corollary 3.2 Let A be a �(C)-model, �i 2 A��i for all i 2 m, X 2 A�� and R be an �-ary logicalrelation over A, for m 2 ! and an ordinal �. If R is satis�ed by �i for all i 2 m but is not satis�edby X, then there is no de�nable a 2 A�0!���!�m�1!� such that a�0 � � � �m�1 = X.Proof. Immediate from Theorem 3.1. 2We can, e.g., use Corollary 3.2 to prove Plotkin's result [Plo77] that parallel or is not de�nablein Finitary PCF. (Although the following proof is due to Plotkin, he never published it. It wasrecently rediscovered by Sieber [Sie92].) De�ne argument tuples �i 2 F 3� for all i 2 2 and a resulttuple X 2 F 3� by taking �0 = htt;?;�i (the �rst argument column of the display at the beginning ofthis section), �1 = h?; tt;�i (the second argument column of that display) and X = htt; tt;�i (theresult column of that display). Let R be the ternary logical relation over F such that hx; y; zi 2 R�i� x = y = z or one of x or y is ?. It is easy to show that R is satis�ed by the interpretations of
,tt, � and If. But R is satis�ed by �0 and �1 but not by X, allowing us to conclude that there isno de�nable f 2 F�2 such that f �0�1 = X.Loader's recent proof of the undecidability of the lambda de�nability problem [Loa94] shows thatCorollary 3.2 fails to provide a complete method for showing non-de�nability (and thus de�nability)results. However, a slight generalization of Theorem 4.1 of [Sie92] shows that it does provide acomplete method in the special case where the orders of C and the �i's are at most one (cf.,Theorem 1 of [Plo80] and Theorem 5 of [JT93]).De�nition 3.3 Suppose A is a �(C)-model and � = h�i 2 A��i j i 2 m i, for m 2 ! and an ordinal� and where C and the �i's have order at most one. Then, R(�) is the �-ary logical relation overA such that X 2 R(�)� i� a�0 � � � �m�1 = X for some de�nable a 2 A�0!���!�m�1!�.Lemma 3.4 (Sieber) Suppose A is a �(C)-model and � = h�i 2 A��i j i 2 m i, for m 2 ! and anordinal � and where C and the �i's have order at most one. Then, R(�) is an �-ary logical relationover A that is satis�ed by �i for all i 2 m.Proof. Suppose that c 2 C�n . If Y0; : : : ; Yn�1 2 R(�)�, then there are closed terms M0; : : : ;Mn�1of type �0 !� � �! �m�1 ! � such that [[Mj]]�0 � � � �m�1 = Yj for all j 2 n. Then, the termM = �x0 � � �xm�1: c (M0 x0 � � � xm�1) � � � (Mn�1 x0 � � � xm�1)4

of type �0 !� � �! �m�1 ! � is such that[[M]]�0 � � � �m�1 = cA Y0 � � � Yn�1;showing that cA Y0 � � � Yn�1 2 R(�)�. Thus cA satis�es R(�). The proof that �i satis�es R(�) forall i 2 m is almost identical (xi is used in the term M instead of c). 2Theorem 3.5 (Sieber) Suppose A is a �(C)-model, � = h�i 2 A��i j i 2 m i and X 2 A�� , form 2 ! and an ordinal � and where C and the �i's have order at most one. Then, a�0 � � � �m�1 = Xfor some de�nable a 2 A�0!���!�m�1!� i� every �-ary logical relation over A that is satis�ed by �ifor all i 2 m is also satis�ed by X.Proof. Immediate from Corollary 3.2 and Lemma 3.4. 2Although Theorem 3.5 gives a characterization of R(�)�, the fact that this characterizationinvolves the universal quanti�cation over all �-ary logical relations over A that are satis�ed bythe �i limits its practical utility. It turns out, however, that we can give a much more directcharacterization of R(�)�.De�nition 3.6 Suppose A is a �(C)-model and � = h�i 2 A��i j i 2 m i, for m 2 ! and an ordinal� and where C and the �i's have order at most one. Then, L(�) is the �-ary logical relation overA such that L(�)� is the least �-ary relation over A� that is closed under cA, for all c 2 C, and �i,for all i 2 m, where the cA's and �i's are viewed as operations over A�� in the obvious way.Lemma 3.7 Suppose A is a �(C)-model and � = h�i 2 A��i j i 2 m i, for m 2 ! and an ordinal� and where C and the �i's have order at most one. Let xi 2 V�i for all i 2 m be distinct variables.(i) Suppose that c 2 C�n , Y0; : : : ; Yn�1 2 A�� and M0; : : : ;Mn�1 2 �(C)�. If fvMj �fx0; : : : ; xm�1g and [[�x0 � � �xm�1:Mj]]�0 � � � �m�1 = Yj;for all j 2 n, then the �-free term M = cM0 � � � Mn�1 of type � is such that fvM � fx0; : : : ; xm�1gand [[�x0 � � �xm�1:M]]�0 � � � �m�1 = cA Y0 � � � Yn�1:(ii) Suppose that i 2 m, Y0; : : : ; Yar�i�1 2 A�� and M0; : : : ;Mar�i�1 2 �(C)�. If fvMj �fx0; : : : ; xm�1g and [[�x0 � � �xm�1:Mj]]�0 � � � �m�1 = Yj;for all j 2 ar�i, then the �-free term M = xiM0 � � � Mar�i�1 of type � is such that fvM �fx0; : : : ; xm�1g and [[�x0 � � �xm�1:M]]�0 � � � �m�1 = �i Y0 � � � Yar�i�1:(iii) For all X 2 L(�)�, there is an M 2 �(C)� such that fvM � fx0; : : : ; xm�1g and[[�x0 � � �xm�1:M]]�0 � � � �m�1 = X:Proof. (i) and (ii) are immediate, and (iii) follows from (i) and (ii) by induction on L(�)�. 25

Lemma 3.8 Suppose A is a �(C)-model and � = h�i 2 A��i j i 2 m i, for m 2 ! and an ordinal� and where C and the �i's have order at most one. Then, L(�) = R(�).Proof. L(�) is clearly an �-ary logical relation over A that is satis�ed by �i for all i 2 m, andL(�)� � R(�)� follows from Lemma 3.7 (iii). For the opposite inclusion, if X =2 L(�)�, then thereis no de�nable a 2 A such that a�0 � � � �m�1 = X, by Corollary 3.2, and thus X =2 R(�)�. 2Theorem 3.9 Suppose A is a �(C)-model, � = h�i 2 A��i j i 2 m i and X 2 A�� , for m 2 ! andan ordinal � and where C and the �i's have order at most one. Then, a�0 � � � �m�1 = X for somede�nable a 2 A�0!���!�m�1!� i� X 2 L(�)�.Proof. Immediate from Lemma 3.8. 2Theorem 3.9 and Lemma 3.7 suggest the following algorithm schema.Algorithm Schema 3.10 Inputs. A �nite family of constants C of order at most one, m;� 2 !,types �0; : : : ; �m�1 of order at most one, a �nite, nonempty set A�, cA 2 A�n for each c 2 C�n ,� = h�i 2 A��i j i 2 m i and X 2 A�� , where we extend A� to a type frame A by taking A�!� to bethe set of all functions from A� to A� for all �; � 2 T .Initialization. Pick distinct variables xi 2 V�i for all i 2 m. Initialize the stage k 2 ! to 0. LetZ � U be f hcA; ci j c 2 C� g [f h�i; xii j i 2 m and �i = � g;where U is set of all pairs hY;M i such that Y 2 A�� , M 2 �(C)� and fvM � fx0; : : : ; xm�1g.Initialize the state S � U to a subset of Z that is a function with domain domZ. (The particularsubset chosen is left unspeci�ed, as is the method used to compute that subset; it need not involvethe construction of Z.) If hX;M i 2 S for some term M , then terminate with k and the term�x0 � � �xm�1:M .Loop. Let Z = Z1 [Z2, where Z1 � U is the set of allhcA Y0 � � � Yn�1; cM0 � � � Mn�1isuch that c 2 C�n , n > 0 and hYj ;Mji 2 S for all j 2 n, and Z2 � U is the set of allh�i Y0 � � � Yar�i�1; xiM0 � � � Mar �i�1isuch that i 2 m, ar�i > 0 and hYj ;Mji 2 S for all j 2 ar�i. Pick a subset S0 of Z such that S0is a function with domain domZ � domS and (y) hY;M i 2 S0 implies that sizeM � sizeN for allN that are paired with Y in Z. (The particular subset chosen is left unspeci�ed, as is the methodused to compute that subset; it need not involve the construction of Z, Z1 or Z2.) If S0 = ;, thenterminate with k and domS. Otherwise, increment k by one and add the elements of S0 to S. (z)If hX;M i 2 S for some term M , then terminate with k and the term �x0 � � �xm�1:M . Otherwise,repeat.An instance of Algorithm Schema 3.10 is an algorithm formed from the schema by specifying thedetails that were left open. Condition (y) is included since experience suggests that this will ensurethat instances of the schema will generate good quality terms. Theorem 3.11 doesn't depend upon(y) being included, however. 6

Theorem 3.11 If we supply the required inputs to an instance of Algorithm Schema 3.10, then oneof the following statements holds.(i) The algorithm terminates with a stage l and a closed term of the form �x0 � � �xm�1:M ,for distinct variables xi 2 V�i and a �-free term M of type � and depth l. Let B be any�(C)-model such that B� = A�, cB = cA for all c 2 C, and �i 2 B��i for all i 2 m.Then, [[�x0 � � �xm�1:M]]�0 � � � �m�1 = X. Furthermore, if N 2 �(C)� is such that fvN �fx0; : : : ; xm�1g and [[�x0 � � �xm�1: N]]�0 � � � �m�1 = X, then depthM � depthN .(ii) The algorithm terminates with a stage l and an �-ary relation Q over A� such that X =2 Q.If B is a �(C)-model with the above properties, then Q = L(�)�, so that there is no de�nable b 2 Bsuch that b�0 � � � �m�1 = X.Proof. Let S0 be the initial value of S, and Sl, for l � 1, be S's value when point (z) is reached forthe lth time (at which point k's value will be l; Sl is unde�ned if the algorithm terminates before(z) has been executed l times). Then, the following properties hold (for (d){(f), B is a �(C)-modelwith the properties speci�ed in the theorem's statement):(a) If Sl is de�ned, then Sl is a function.(b) If Sl+1 is de�ned, then it is a proper superset of Sl .(c) If Sl is de�ned, hY;M i 2 Sl and either l = 0 or Y =2 domSl�1, then depthM = l.(d) If Sl is de�ned, then domSl � L(�)�.(e) If Sl is de�ned and hY;M i 2 Sl, then [[�x0 � � �xm�1:M]]�0 � � � �m�1 = Y .(f) If Sl is de�ned, M 2 �(C)�, fvM � fx0; : : : ; xm�1g and depthM = l, then[[�x0 � � �xm�1:M]]�0 � � � �m�1 2 domSl.The proofs of properties (a), (d) and (e) are by induction on l, and Lemma 3.7 (i) and (ii) areused in (e)'s proof. The proof of (b) is obvious.For (c), we use a course of values induction on l. We consider the case where M has the formcM0 � � � Mn�1 (the case where M has the form xiM0 � � � Mar �i�1 is similar). If l = 0, then n = 0,and thus depthM = depth c = 0. So, suppose that l > 0, so that Y =2 domSl�1. Then, n > 0 andthere are Yj 2 A�� for all j 2 n such that hYj ;Mji 2 Sl�1 for all j 2 n and Y = cA Y0 � � � Yn�1.Let the stages pj < l for all j 2 n be such that Yj 2 domSpj and either pj = 0 or Yj =2 domSpj�1.Then, depthMj = pj for all j 2 n, by the inductive hypotheses for the pj's, so that depthM � l.But, there must be a j 2 n such that pj = l� 1, since otherwise Y 2 domSl�1. Thus, depthM = l.The proof of (f) also proceeds by course of values induction on l, and, again, we con-sider the case where M has the form cM0 � � � Mn�1. If l = 0, then n = 0, and thus[[�x0 � � �xm�1:M]]�0 � � � �m�1 = cA 2 domSl. So, suppose that l > 0, so that n > 0. Letpj < l and Yj 2 A�� , for all j 2 n, be depthMj and [[�x0 � � �xm�1:Mj]]�0 � � � �m�1, respectively.Then, by the inductive hypotheses for the pj 's, we have that Yj 2 domSpj for all j 2 n, so thatcA Y0 � � � Yn�1 2 domSl . But [[�x0 � � �xm�1:M]]�0 � � � �m�1 = cA Y0 � � � Yn�1, by Lemma 3.7 (i),and thus we are done.From (a) and (b) and the fact that there are only �nitely many �-tuples over A�, we can concludethat there is a largest l such that Sl is de�ned.Suppose hX;M i 2 Sl for some M , so that either l = 0 or X =2 domSl�1 (otherwise, Slwould be unde�ned). Then, the algorithm terminates with a stage of l and the closed term�x0 � � �xm�1:M , and depthM = l follows by (c). Let B be a �(C)-model satisfying the speci�edconditions. Then, [[�x0 � � �xm�1:M]]�0 � � � �m�1 = X by (e). Furthermore, if N 2 �(C)� is such7

Figure 1: Lambda de�nability problemsproblem ! iota sect funs sect cons sect tests sectiota sect ! iota Elem fElem gfuns sect ! functions f fun gfun ! Fun clause f clause gclause ! pat f pat g = resultpat ! Elem j Var j _result ! Elem j Varcons sect ! constants f con gcon ! Elem j Funtests sect ! tests test f test gtest ! f test arg g = test resulttest arg ! Elem j Funtest result ! Elemthat fvN � fx0; : : : ; xm�1g and [[�x0 � � �xm�1: N]]�0 � � � �m�1 = X, then depthM � depthN ,since otherwise (f) would imply that X 2 domSl0 for some l0 < l.Otherwise, X =2 domSl, and thus the algorithm terminates with a stage of l and domSl. LetB be a �(C)-model satisfying the speci�ed conditions. By (d) and the fact that Sl+1 is unde�ned,we have that domSl = L(�)�. Thus, there is no de�nable b 2 B such that b�0 � � � �m�1 = X, byTheorem 3.9. 2Although instances of Algorithm Schema 3.10 always produce terms of minimal depth, they oftenfail to produce terms of minimal size. In fact, it is not hard to �nd an example of a pair of termswith identical depth and meaning, where the �rst term is produced by a schema instance and thesecond has strictly smaller size than the �rst (see the lambda de�nability problem size.lam that isincluded with Lambda's distribution).4 ImplementationIn this section, we describe an implementation, Lambda, of an instance of Algorithm Schema 3.10,and give several examples of its use. Lambda doesn't carry out the algorithm's steps itself. Instead,it takes in a lambda de�nability problem, representing the algorithm's input data, and generates aC program that solves this problem, producing the algorithm's output.The grammar in Figure 1 describes the syntax of lambda de�nability problems. In this grammar,curly brackets are used to denote repetition (zero or more occurrences of the phrases they surround).An element name, Elem, consists of a single upper case letter or digit. A function name, Fun, consistsof an upper case letter, followed by one or more letters or digits. A variable name, Var, consists8

of a lower case letter, followed by zero or more lower case letters or digits. As usual, white spacecharacters and comments (which begin with # and continue until end of line) separate tokens butare otherwise ignored.A lambda de�nability problem has four sections. The iota section lists the elements of the setA�|the elements that exist at type �.The functions section de�nes zero or more �rst-order functions, using ML-style pattern matching.Each function de�nition consists of the function's name followed by a sequence of clauses, each ofwhich must have the same number of patterns in its left hand side. A given variable may not appeartwice in the left hand side of the same clause, and, if the right hand side of a clause is a variable,then that variable must appear in the left hand side of that clause.Suppose that the body of a given function de�nition has the formp00 � � � p0m�1 = r0...pn�10 � � � pn�1m�1 = rn�1:A clause j matches a sequence of argument elements a0; : : : ; am�1 i�, for all i 2 m, the pattern pji isthe wildcard _ or is a variable or is equal to ai. The function de�nition must be completely speci�ed inthe sense that it has at least one clause that matches any given sequence of arguments. Furthermore,each of its clauses must be non-redundant in the sense that the clause matches some sequence ofelements that isn't matched by any preceding clause in the de�nition. The function de�ned by thefunction de�nition is the element of A�m that sends a sequence of arguments a0; : : : ; am�1 to rj , ifclause j is the �rst clause that matches the argument sequence and rj is an element, and sends theargument sequence to ai, if clause j is the �rst clause that matches the argument sequence, rj is avariable and pji = rj.The constants section speci�es the family of constants C, and thus the functions cA for c 2 C.Finally, the tests section must have the form�00 � � � �0m�1 = X0...���10 � � � ���1m�1 = X��1:It implicitly speci�es the natural numbers m and �, the types �0; : : : ; �m�1, the argument tuples�0 2 A��0 ; : : : ;�m�1 2 A��m�1 and the result tuple X 2 A�� . The number of tests, �, is required tobe non-zero, since otherwise a method of explicitly specifying the types �i would have to be devised.Lambda is written in ANSI C, with the exception of its lexical analyzer and parser, which arewritten in Lex and Yacc source, respectively. It uses one UNIX System V system call. The Cprograms that it generates also conform to the ANSI standard; they use several UNIX System Vsystem calls in order to implement checkpointing. The programs generated by Lambda make no useof dynamic storage allocation (except during their initialization phases).A program generated by Lambda codes tuples of elements as integers, and represents the algo-rithm's state as an array indexed by those codes. An element of this array records (among otherthings) whether the tuple coded by its index has been found. If it has, the way in which it wasconstructed from previously produced tuples is also recorded; implicit in this information is a termthat computes the tuple from the argument tuples. When a new tuple is found during a given9

stage of the closure process, its element of the array is updated to record this fact, but new tuplesare distinguished from existing tuples until the stage's end. New tuples are produced by n nestedfor loops over the tuple codes, where n is the greatest number of arguments that any constant orargument tuple expects. When a given new tuple can be formed in multiple ways, the �rst wayfound whose implicit term has minimal size is selected.Figure 2 contains our �rst example lambda de�nability problem (in the left column), along withits solution (in the right column). The comment indicates that this problem is contained in the �lepor1.lam that is included as part of Lambda's distribution. We think of B, T and F as standingfor the elements ?, tt and �, respectively, of the monotone function model F of Finitary PCF.The occurrence of B in the constants section stands for the constant
 of Finitary PCF, which isinterpreted as ? in F . The problem is to determine whether parallel or is de�nable in models ofFinitary PCF that consist of f?; tt;�g at type � and in which the constants are interpreted in thesame way as in F (it will either be de�nable in all or no models of this sort).Applying Lambda to por1.lam generates a C program that carries out the algorithm's closureprocess, producing the relation listed in the �gure. The stage of one indicates that it took only onestage of this process for the relation to stabilize, and it is easy to see that this relation is the oneused to show the non-de�nability of parallel or in the preceding section. (A triple hx; y; zi is in therelation i� x = y = z or x = ? or y = ?.) Note that the result triple htt; tt;�i is in the complementof the relation.Figure 3 shows that parallel or remains non-de�nable when parallel convergence is added toFinitary PCF (the original proof of this result can be found in [Abr90]). This time the C programproduced by Lambda was run in verbose mode, with the consequence that the elements of theresulting relation are labeled with the stages at which they were found. The relation contains twomore triples than does the relation of Figure 2: htt; tt;?i (found at stage 2) and h�;�;?i (found atstage 3).Figure 4 shows how a non-de�nability result from Proposition 4.4.2 of [Cur93] can be provedusing logical relations. The resulting relation consists of those triples hx; y; zi such that x = y = zor one of x, y or z is ?. Oddly, it can be formed by adding two triples to the relation of Figure 3.Figure 5 shows how the Berry-Plotkin function (cf., Exercise 4.1.18.2 of [Cur93]) can be used toseparate Curien's A1, A2 and A3. This time, the program produced by Lambda was run in bothordinary (middle column) and verbose (right column) modes. The output indicates that the termH = �x0:BP (x0
 tt �) (x0 tt �
) (x0 �
 tt)(the ?'s have been replaced by
's) was found after two stages of the closure process. The verboseversion of the program's output shows that the result triple htt;�;�i became paired with the bodyof H at stage 2 of the closure process sincehtt;�;�i = BP h?; tt;�i htt;�;?i h�;?; ttiand the triples h?; tt;�i, htt;�;?i and h�;?; tti were paired with the terms x0
 tt �, x0 tt �
 andx0 �
 tt, respectively, at stage 1. Similarly, the triple h?; tt;�i is paired with the term x0
 tt � atstage 1 since h?; tt;�i = hA1; A2; A3i h?;?;?i htt; tt; tti h�;�;�iand the constantly ?, tt and � triples were paired with the terms
, tt and � at stage 0.10

Figure 2: Non-de�nability of parallel or# por1.lam por1iota Stage: 1B T F Relation (17 elements):functions <B B B><B B T>If B _ _ = B <B B F>T x _ = x <B T B>F _ y = y <B T T><B T F>constants <B F B><B F T>B T F If <B F F><T B B>tests <T B T><T B F>T B = T <T T T>B T = T <F B B>F F = F <F B T><F B F><F F F>Relation complement (10 elements):<T T B><T T F><T F B><T F T><T F F><F T B><F T T><F T F><F F B><F F T>
11

Figure 3: Parallel or is not de�nable using parallel convergence# por2.lam por2iota Stage: 3B T F Relation (19 elements):functions <B B B> 0<B B T> 1If B _ _ = B <B B F> 1T x _ = x <B T B> 1F _ y = y <B T T> 1<B T F> 0PConv B B = B <B F B> 1_ _ = T <B F T> 1<B F F> 1constants <T B B> 1<T B T> 1B T F If PConv <T B F> 0<T T B> 2tests <T T T> 0<F B B> 1T B = T <F B T> 1B T = T <F B F> 1F F = F <F F B> 3<F F F> 0Relation complement (8 elements):<T T F><T F B><T F T><T F F><F T B><F T T><F T F><F F T>
12

Figure 4: The impossibility of separating Curien's A1, A2 and A3.# curien1.lam curien1iota Stage: 2B T F Relation (21 elements):functions <B B B><B B T>If B _ _ = B <B B F>T x _ = x <B T B>F _ y = y <B T T><B T F>A1 T F _ = T <B F B>F _ T = F <B F T>_ _ _ = B <B F F><T B B>A2 _ T F = T <T B T>T F _ = F <T B F>_ _ _ = B <T T B><T T T>A3 F _ T = T <T F B>_ T F = F <F B B>_ _ _ = B <F B T><F B F>constants <F T B><F F B>B T F If <F F F>tests Relation complement (6 elements):A1 = T <T T F>A2 = F <T F T>A3 = F <T F F><F T T><F T F><F F T>
13

Figure 5: The Berry-Plotkin function can be used to separate A1, A2 and A3.# curien3.lam curien3 curien3iota Stage: 2 Stage: 2B T F Term: Term:functions lambda x0. lambda x0.BP BP <T F F>If B _ _ = B x0 x0 <B T F>T x _ = x B B <B B B>F _ y = y T T <T T T>F F <F F F>A1 T F _ = T x0 x0 <T F B>F _ T = F T T <T T T>_ _ _ = B F F <F F F>B B <B B B>A2 _ T F = T x0 x0 <F B T>T F _ = F F F <F F F>_ _ _ = B B B <B B B>T T <T T T>A3 F _ T = T_ T F = F_ _ _ = BBP T F _ = F_ T F = TF _ T = F_ _ _ = BconstantsB T F If BPtestsA1 = TA2 = FA3 = F
14

As a �nal example, we consider the problem of determining whether there is a de�nable elementof type �3 ! � of the monotone function model F of Finitary PCF that sends an argument x to tt,if x w Ai for some i, and sends x to ?, otherwise. Since there are many elements of F�3 that don'tdominate any of the Ai's, Lambda can't be used in a purely mechanical way to solve this problem.One can, however, use Lambda to solve lambda de�nability problems that specify that cer-tain hand-picked functions must be sent to ?. A bit of experimentation (see curien4.lam andcurien5.lam in Lambda's distribution) lead to the problem of Figure 6, which speci�es that parallelor, parallel and, and their \negations" should be sent to ?. Running the program generated fromthis problem by Lambda takes a considerable amount of time (about eight hours of cpu time on aSun 690MP) and produces the term �x0: G, whereG = x0LM NL = If Z (If Y
�) (IfX tt
)M = IfX (If Z
�) (If Y tt
)N = If Y (IfX
�) (If Z tt
)X = x0 tt �
Y = x0
 tt �Z = x0 �
 tt:By considering the possible values of X, Y and Z, it is straightforward to show that G producestt i� x0 dominates one of the Ai's or is the constantly tt function. Furthermore, the term �x0:H,where H = x0M N L;is produced as the solution of the variation of this problem (called curien7.lam in Lambda's distri-bution) that speci�es that the Ai's should be sent to � rather than to tt, and H produces � i� x0dominates one of the Ai's or is the constantly � function. Thus, it is easy to see that the termQ = �x0: If G (IfH
 tt)
solves the problem of sending an argument to tt, when it dominates one of the Ai's, and sendingthe argument to ?, otherwise.Interestingly, I wasn't able to generate such a term as the solution to a single lambda de�nabilityproblem. One obstacle to my doing so was the necessity of employing at most seven tests, since itwould take weeks rather than hours to solve a problem with eight tests. In any event, there is nochance of producing Q itself in such a way, since its body has depth six and there is another knownsolution to the problem whose body has depth �ve.AcknowledgmentsIt is a pleasure to acknowledge many fruitful discussions with Achim Jung. Conversations withAntonio Bucciarelli, Shai Geva, Alan Je�rey, Ralph Loader and Edmund Robinson were also helpful.15

Figure 6: Synthesis of a term sending the A's to tt and parallel or, parallel and, and their negationsto ?.# curien6.lam PAnd T T T = TF _ _ = Fiota _ F _ = F_ _ F = FB T F _ _ _ = Bfunctions NPAnd T T T = FF _ _ = TIf B _ _ = B _ F _ = TT x _ = x _ _ F = TF _ y = y _ _ _ = BA1 T F _ = T constantsF _ T = F_ _ _ = B B T F IfA2 _ T F = T testsT F _ = F_ _ _ = B A1 = TA2 = TA3 F _ T = T A3 = T_ T F = F POr = B_ _ _ = B NPOr = BPAnd = BPOr F F F = F NPAnd = BT _ _ = T_ T _ = T_ _ T = T_ _ _ = BNPOr F F F = TT _ _ = F_ T _ = F_ _ T = F_ _ _ = B 16

References[Abr90] S. Abramsky. The lazy lambda calculus. In D. L. Turner, editor, Research Topics inFunctional Programming, pages 65{116. Addison-Wesley, 1990.[Cur93] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.Progress in Theoretical Computer Science. Birkh�auser, 1993.[JS93] A. Jung and A. Stoughton. Studying the fully abstract model of PCF within its continuousfunction model. In M. Bezem and J. F. Groote, editors, International Conference on TypedLambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages230{244. Springer-Verlag, 1993.[JT93] A. Jung and J. Tiuryn. A new characterization of lambda de�nability. In M. Bezem andJ. F. Groote, editors, International Conference on Typed Lambda Calculi and Applications,volume 664 of Lecture Notes in Computer Science, pages 245{257. Springer-Verlag, 1993.[Loa94] R. Loader. The undecidability of �-de�nability. In M. Zeleny, editor, The Church Festschrift.CSLI/University of Chicago Press, 1994.[Mit90] J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B, chapter 8, pages 367{458. ElsevierScience Publishers, 1990.[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,5:223{256, 1977.[Plo80] G. D. Plotkin. Lambda-de�nability in the full type hierarchy. In J. Seldin and J. Hindley,editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,pages 363{374. Academic Press, 1980.[Sie92] K. Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman,P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science,volume 177 of LMS Lecture Note Series, pages 258{269. Cambridge University Press, 1992.
17

