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Chapter 1

Introduction

1.1 Program Equivalence and Full Abstraction

Notions of program equivalence are fundamental to the theory and practice of pro-
gramming languages. They are the semantic basis for program optimization and can
be used to justify the correctness-preserving transformations that are employed by
program manipulation systems. Notions of program equivalence are generally substi-
tutive in the sense that the results of embedding equivalent terms (program fragments)
into a context (a term with “holes” in it) are also equivalent. Thus a programmer can
replace fragments of a program by equivalent terms without considering the details
of the whole program.

Program equivalences are typically defined according to the following paradigm.
Terms that are considered to be directly executable and observable are designated as
programs, and their behaviour is defined. Then two terms are defined to be equivalent
if and only if (iff) they have the same behaviour in all program contexts, i.e., iff one
can be replaced by the other in any program without affecting the behaviour of that
program. Thus term equivalence is reduced to program behaviour.

The distinction between terms and programs is often suggested by the syntactic
categories of programming languages. For example, in an imperative language with
statements and expressions the statements might be taken to be the programs, re-
flecting the view that expressions can only be executed as parts of statements. For
languages with block structure, i.e., in which identifiers can be statically bound, it is
common to take the closed terms as the programs.

By the behaviour of programs we mean the actions of programs that are visible
to external observers. Program behaviours for a deterministic programming language



might simply be functions from inputs to outputs, whereas behaviours for languages
with communicating processes might consist of communication histories. Much de-
pends upon the level of detail that external observers are allowed to see.

It is also possible to consider notions of program ordering, i.e., notions of when
one term should be considered less defined, or convergent, than another. Program
orderings are typically defined by ordering the set of program behaviours and then
defining one term to be less than another iff the behaviour of the first is less than
that of the second in all program contexts.

Program behaviours and their orderings can be defined as abstractions of both
operational and denotational semantics, although the literature is currently biased
toward the use of operational semantics. Examples of the use of denotational seman-
tics in this way are given in this monograph. Often there are multiple natural notions
of behaviour that can be defined via a given semantics. Examples of behaviourally
defined program orderings and equivalences can be found in [Mill], [Mil3], [Plol] and
[HenPlol].

Once a notion of program equivalence has been selected for a programming lan-
guage, its properties must be determined and proof techniques found. Denotational
semantics, as developed by Scott, Strachey and their followers (see [Stoy] for an in-
troduction and extensive references), is a suitable framework for these activities. The
idea is to reduce the equivalence of terms to the equality of their semantic values in
appropriate models, i.e., to semantically capture the notion of program equivalence.
Thus it is necessary to work with models that are equationally correct (or simply
correct) in the sense that only equivalent terms are identified (mapped to the same
semantic value). Models with the ideal property that exactly the equivalent terms
are identified are called equationally fully abstract (or simply fully abstract).

Similarly, one can judge denotational semantics with reference to notions of pro-
gram ordering. A model is said to be inequationally correct with reference to a
program ordering iff one term is less than another in the program ordering whenever
the meaning of the first is less than that of the second in the model, and inequation-
ally fully abstract iff one term is less than another in the program ordering exactly
when the meaning of the first is less than that of the second in the model.

For models to be useful for reasoning about program equivalences or orderings, it
is necessary that their structure be understandable independently from those equiv-
alences or orderings; informally, we call such models natural. For example, models
synthesized using the standard constructions of denotational semantics are generally
natural, in contrast to term models, i.e., models constructed from equivalence classes



of terms, etc.

The idea of judging denotational semantics with reference to predefined notions of
program ordering and equivalence is due to Milner [Mill] and Plotkin [Plo1] and has
been studied, for a variety of programming languages, by Abramsky, Berry, Curien,
Hennessy and others. Research on full abstraction can be divided into two categories:

(i) The synthesis and analysis of natural models.

(ii) The theoretical study of the conditions under which fully abstract models
exist.

We consider each of these in turn.

For many programming languages, the standard techniques of denotational seman-
tics yield natural models that are too concrete, i.e., correct but not fully abstract.
Many common language features, such as functions of higher type, concurrency, stor-
age allocation and data abstraction, are problematic. This phenomenon was first no-
ticed in connection with a simple applicative programming language, based upon the
typed lambda calculus, called PCF (Programming Computable Functions). Plotkin
[Plol]| showed that the natural continuous function model of PCF is correct, but not
fully abstract, with reference to its standard notion of program equivalence, which
is based upon the total evaluation of closed ground terms. This lack of full abstrac-
tion is due to the presence of certain “parallel” elements in the model, which are not
realized by terms in the programming language. In fact, Plotkin showed that if a
“parallel conditional” is added to the language then the continuous function model
of this extended language is fully abstract. The problem of finding a natural fully
abstract model of the original language is still open, although much progress has been
made by Berry, Curien and Winskel [BerCurLév]. A byproduct of their work is the
sequential algorithms model of PCF [BerCur], which is fully abstract with reference
to an alternative notion of program equivalence that is sensitive to the order and
extent of evaluation of function arguments. See [BerCurLév] for an excellent survey
of this and other research into the full abstraction problem for PCF.

Other examples of the search for natural fully abstract models can be found
in [HenPlol], which considers a simple parallel programming language, [Abrl] and
[Abr2], which treat a nondeterministic applicative language with infinite streams, and
[Bro| and [HalMeyTra], which deal with Algol-like languages. Many open problems
exist.

The difficulty of finding natural fully abstract models for many programming
languages has led to the theoretical study of the conditions under which fully abstract
models exist. Proofs of the existence or nonexistence of fully abstract models of



programming languages are relative, of course, to what count as models of those
languages. Positive results spur on the search for natural models, whereas negative
ones indicate that the class of models being considered must be widened.

The study of the existence of fully abstract models can be carried out within
the framework of initial algebra semantics [Sco][ADJ1][CouNiv]. Programming lan-
guage syntax is specified in this framework by many-sorted signatures, whose sorts
and operators correspond to the syntactic categories and constructs, respectively,
of programming languages, and models are universal algebras whose carriers have
certain order-theoretic structure and whose operations preserve that structure. Usu-
ally the carriers are taken to be complete partial orders (cpo’s) and the operations
continuous functions, but it is also possible to work with weaker notions of conti-
nuity [AptPlo][Plo2] or to generalize from partial orders to categories [Leh][Abr2].
The meanings assigned by models to iteration and recursion constructs are normally
required to be least fixed points of appropriate unary derived operations. For ex-
ample, the meaning of a while-loop while £ do S od should be the least fixed point
of if E'then S; — else skip fi. Many additional requirements may be set for models
of particular programming languages, e.g., extensionality for models of applicative
languages.

Positive results are typically proved via term model constructions. Such techniques
were first used by Milner, who constructed a fully abstract model of the combinatory
logic version of PCF [Mil2]. His construction was simplified and applied to the typed
lambda calculus version of PCF by Berry [Berl]|. Similar techniques were used by
Hennessy and Plotkin to construct fully abstract models of two variants of CCS
[HenPlo2|[Hen]. These term model constructions proceed, roughly, as follows. One
designates certain terms as “semantically finite”, orders them by the language’s notion
of program ordering, and then makes them into an w-algebraic c¢po, using the familiar
ideal completion. An algebra is then defined using this cpo as its carrier. In Berry’s
construction, the syntactic projections W,, M of arbitrary terms M are taken as the
semantically finite terms.

Recently, Mulmuley has considered the problem of connecting the continuous func-
tion model of the combinatory logic version of PCF with Milner’s fully abstract model
[Mul]. Using operationally defined inclusive predicates, he defines a fully abstract
model as a retract of the complete lattices version of the continuous function model
and then removes the top elements from this model, thus yielding Milner’s model. In
this ingenious construction the unwanted, parallel functions are retracted either to
wanted, sequential ones or to the top elements. Thus the technique is not applicable



to the usual continuous function model, which is based instead upon cpo’s; since the
complete lattices model is less abstract than the cpo model [Plol], this may be seen
as a disadvantage. In addition, Mulmuley’s retraction does not preserve function ap-
plication, and thus is not a homomorphism of algebras, and his retract model is not a
combinatory algebra, because of the interaction between the K combinators and the
top elements.

The first negative result was proved by Apt and Plotkin [AptPlo] for a nondeter-
ministic imperative programming language with random assignment, i.e., the facility
for choosing an arbitrary natural number and assigning it to a variable. They prove
that there does not exist a fully abstract model that is based upon cpo’s and con-
tinuous functions for this language. This is because there are programs (such as the
one that chooses a natural number and then decrements it until it becomes zero) that
always terminate, but whose finite approximations all have the possibility of diver-
gence. They are able, however, to give a natural fully abstract model that is based
upon a weaker notion of continuity. Abramsky, following this work, has proved a
similar negative result for a nondeterministic applicative programming language with
infinite streams [Abr3].

1.2 A Theory of Fully Abstract Models

All of the research described above has focused on full abstraction for specific pro-
gramming languages. In this monograph we try to develop a theory of fully abstract
models of programming languages that is applicable to programming languages in
general. The goal is to develop a unified framework in which simpler proofs of the
existing positive and negative results can be given and new results can be proved.
The following paragraphs summarize the contents of the monograph.

We begin by building a mathematical framework for studying full abstraction,
based upon initial algebra semantics. As models we take complete ordered algebras,
i.e., many-sorted universal algebras whose carriers are sort-indexed families of com-
plete partial orders and operations are continuous functions. Following [CouNiv],
every signature is required to contain a distinguished nullary operator €2 of each sort,
which stands for divergence or nontermination, and is interpreted as the least ele-
ment of its sort in every model. Although programming languages rarely contain
such constants explicitly, many languages for which divergence is possible in all syn-
tactic categories do contain terms that the constants {2 can be modelled after, e.g.,
while true do skip od, in some imperative languages. Chapter 2 consists of the def-



initions and theorems concerning universal algebras and ordered algebras that will
be needed in the sequel. In particular, we prove several quotienting and completion
theorems that will be used in term model constructions.

Chapter 3 is devoted to the definitions and elementary properties of full ab-
straction and least fixed point models. We consider three kinds of full abstraction
(and also correctness): equational, inequational and contextual. The first two are as
described above, and the third is the natural generalization of equational full abstrac-
tion from ordinary terms to contexts. Formally, notions of program equivalence are
congruences over the term algebra, and notions of program ordering are substitutive
pre-orderings over the term algebra in which the maximally divergent terms €2 are
least elements. Least fixed point models are intended to assign iteration and recursion
constructs meanings that are least fixed points of appropriate unary derived opera-
tions. Such requirements are formally expressed in our framework by families of least
fized point constraints, which specify that the meanings of certain terms should be
least upper bounds of the meanings of certain directed subsets of the ordered term
algebra. We also consider contextually least fixed point models, which are the natural
generalization of least fixed point models from terms to contexts.

In chapter 4 we study two programming languages within our framework. The
first is the combinatory logic version of PCF, and the second is an imperative language
with explicit storage allocation and higher and recursive types, which we call TIE.
We give denotational semantics for both of these languages, define notions of program
ordering and equivalence as abstractions of these models, in a uniform manner, and
show that the models are inequationally correct with reference to these notions of
ordering. In contrast, the model of PCF is already known not to be fully abstract,
and we conjecture that neither is our model of the second language.

In chapter 5 we give necessary and sufficient conditions for the existence of cor-
rect and fully abstract models, for each of the three kinds of correctness and full
abstraction. The condition for the existence of inequationally fully abstract models is
the cornerstone of these results. An inequationally fully abstract model of a program-
ming language exists iff its notion of program ordering satisfies the constraints in the
closure—under the operations of the term algebra—of its family of least fixed point
constraints. Showing the necessity of this condition is straightforward. Its sufficiency
is proved via a term model construction: the ordered term algebra is quotiented by
the notion of program ordering, and then embedded into a complete ordered algebra
in a way that preserves the least upper bounds corresponding to the constraints in
the closure of the family of least fixed point constraints. The chapter concludes with



several theorems concerning the existence of initial objects and the nonexistence of
terminal objects in various categories of models.

Chapter 6 consists of simplified proofs of the negative results of [AptPlo] and
[Abr3], using the condition for the existence of equationally fully abstract models
given in chapter 5. Although our theory is directly applicable to Abramsky’s nonde-
terministic applicative language with streams, we prefer to work instead with a non-
deterministic imperative language with infinite output streams. Since the streams of
our language are unreadable, in contrast to those of Abramsky’s language, we achieve
a slight sharpening of his result. The notions of program equivalence for the lan-
guages of this chapter are defined via operational semantics, and no model-theoretic
reasoning is used in the proofs of the negative results.

In chapter 7, we investigate two approaches to obtaining fully abstract models
from correct ones. In the first, we use the condition for the existence of inequation-
ally fully abstract models given in chapter 5 in order to develop useful necessary
and sufficient conditions involving the existence of correct models. In the second, we
consider the possibility of collapsing correct models, via continuous homomorphisms,
to fully abstract ones. We show that this is not always possible—indeed the natural
continuous function model of PCF provides a counterexample—but give sufficient
conditions for its possibility. Both of these approaches yield fully abstract models for
the languages introduced in chapter 4, and, more generally, for languages whose no-
tions of program ordering and equivalence are defined as abstractions of models using
the technique of chapter 4. In the case of PCF, we are able to continuously collapse
the reachable inductive subalgebra of the continuous function model to Milner’s fully
abstract model, thus providing a pleasing, algebraic solution to Mulmuley’s problem
of relating these models.

Finally, in chapter 8, we consider the limitations of the monograph and the
corresponding possibilities for further research.



Chapter 2

Universal Algebras and Ordered
Algebras

This chapter introduces the definitions and theorems concerning universal algebras
and ordered algebras that are the basis of the monograph. We begin, in section 2.1,
by describing the (mostly standard) conventions of notation and terminology that
will be followed in the sequel.

Sections 2.2 and 2.3 deal with the basics of many-sorted algebras and ordered
algebras, respectively. Most of the definitions and theorems in these sections are
both standard and straightforward and detailed references will not be given. Those
readers who are interested in the history of these ideas are referred to [Gri], for the
universal algebra, and [Sco], [ADJ1], [CouNiv] and [Nel|, for the work on ordered
algebras. The exception to this is the definition and treatment of “unary-substitutive
pre-orderings”, which I believe to be new (see definition 2.2.23).

Section 2.4 consists of a completion theorem and two quotienting theorems for
ordered algebras. The completion theorem is a variation of that of [CouRao] and
concerns the embedding of ordered algebras into complete ordered algebras in such
a way that certain existing least upper bounds are preserved. For our results in
chapters 5 and 7 we must preserve sets of existing least upper bounds that cannot be
described by the usual families of subsets [CouRao| (subset systems in the terminology
of [ADJ2] and [Nel]), which are defined uniformly for all ordered algebras. As a result,
we work with families of subsets that are associated with individual ordered algebras.
The quotienting theorems are taken from [CouNiv] and [CouRao].



2.1 Mathematical Conventions

We identify the set of natural numbers N with the ordinal w, so that 0 = ) and
n=14{0,1,...,n— 1}, and write Tr for the set {tt, [f} of booleans.

Function space formation, X —Y, associates to the right and function application,
f a, to the left. We sometimes write Y X for X =Y. For f: X =Y and X' C X, f X'is
{fz ]z e X'} CY,theimageof X' under f, and f|X"is{(z,y) € f |z € X' }: X'—
Y, the restriction of f to X'. For a set X, idx: X — X is the identity function, and
for f: X =Y and g:Y — Z, go f: X — Z is the composition of f and g. The nth
iterate, f™, of a function f: X — X is defined by f° =idx and f"*!' = fo f".

For a set X, the set X™* of finite sequences of elements of X is U, ¢, X", and the
set X of finite and infinite sequences of elements of X is X* U X“. For a € X*
(respectively, a € X%), |al, the cardinality of a, doubles as the length of a. Further-
more, C doubles as the is-a-prefix-of relation on sequences. We write (z1,...,z,)
for elements of X™ C X*; in particular, () = () € X is the empty sequence. For
a € X* and b € X* (respectively, b € X*), the concatenation of a and b, ab € X*
(respectively, ab € X*¥), is

aU{{(n+lal,z) | (n,x)y €b}.

The product Dy x --- x D, of sets Dy,...,D,, n > 0, is {{(dy,...,d,) |
d; € D;}. Thus, if n = 0 then Dy x --- x D, = {()}. The projection functions
mi: Dy X - x D, = D;; 1 < i < n, are defined by m; (dy,...,d,) = d;. More gener-
ally, the product [],cx A, of an X-indexed family of sets A is

{pX—J A |preA,forallze X}
rzeX
The projection functions 7,:[[,cx Az — A, are defined by 7, p = pz, and we often
write p[z| for 7w, p. For z € X,

—[=/2: (1] Ae) x Ae = (]] Ax)

zeX zeX

is defined by
a ify=ux,
T, pla/x] =
vpla/a] { (my p) otherwise.
We write PX for the powerset of a set X, i.e., the set of all subsets of X.
A binary relation over a set is a pre-ordering iff it is reflexive and transitive, a

partial ordering iff it is an antisymmetric pre-ordering, and an equivalence relation



iff it is a symmetric pre-ordering. If R is a relation over X then we write R* for the
reflexive-transitive closure of R. If < is a pre-ordering then we write > for its inverse
(x > y iff y < ). Other examples of the notation for inverses are > for < and >;
for <;. Note that the inverse is not always the exact mirror image of the original
ordering. If = is an equivalence relation over X then X/=, the quotient of X by =,
is { [z]= | v € X }, where [z]=, the =-equivalence class of z, is {2’ € X |2/ =z }.
Sometimes we drop the relation = from [z]=.

As we will make extensive use of many-sorted algebras, we will frequently need
to manipulate families of (structured) sets. Many operations and concepts extend
naturally from sets to families of sets, in a pointwise manner. For example, if A
and B are X-indexed families of sets, i.e., functions with domain X, then a function
f: A— B is an X-indexed family of functions f,: A, —B,,r € X; AC Biff A, C B,,
for all z € X; and (AN B), = A, N By, for all z € X. We will make use of these and
other such extensions without explicit comment.

We often give inductive definitions of sets, i.e., we define a set X to be the least set
(under the subset relation) satisfying certain closure conditions. A proof by induction
over X of a proposition Vx € X ¢(z) consists of showing that the set ¥ = {z € X |
¢(x) } satisfies the closure conditions, since, by the leastness of X, we can then
conclude that ¥ = X. Induction over the natural numbers and structural induction
over term algebras (see definition 2.2.5) are special cases of this general principle.

2.2 Many-Sorted Algebras

This section contains the definitions and results concerning many-sorted algebras that
will be used in the sequel. We begin with the definitions of signatures, algebras, ho-
momorphisms and subalgebras. The initial or term algebra is then defined, followed
by the definition of reachability. Substitutive and 2-least pre-orderings over alge-
bras are then considered. Next, derived operations are introduced, leading to the
important notion of unary-substitutive pre-orderings. Several results relating unary-
substitutivity and substitutivity then follow, and the section concludes with two lem-
mas concerning the relations over the term algebra that are induced by relations over
algebras.

Definition 2.2.1 A signature X consists of a set of sorts S, a set of operators X,
and a function from ¥ to (S* x S), which assigns types to operators. We write s; x
-+ X 8, — 5" for n-ary types ((s1, ..., $,),s'); unary types ((s1), s') are written s; — ',

10



and nullary types ((),s') as s’. In addition, each signature contains a distinguished
nullary operator €2; of type s, for each s € S. We often drop the sort s from €.

The operators 2; may be thought of as representing divergence or nontermination.

Definition 2.2.2 A Y-algebra A is an S-indexed family of sets A (the carrier of
A) together with an operation o4: As, X --- x A;, — Ay, for each 0 € ¥ of type
S1 X+ X s, = 8. A homomorphism h: A — B over algebras is a function h: A — B
such that for all o € ¥ of type s1 X --- X 5, = &,

hy oa{ay,...,an) = oplhs, a1,. .., hs, ay),

forall a; € A,,, 1 < i < n.

We use uppercase script letters (A, B, etc.) to denote algebras and the cor-
responding italic letters (A, B, etc.) to stand for their carriers. We often drop the
algebra A from o 4, and write o, 0 a and a; 0 ay, instead of (), o(a) and o{ay, as), for
nullary, unary and binary operations, respectively. As usual, if ®(—) is an operation
on algebras then we write ®(A) for the carrier of ®(A).

Definition 2.2.3 For algebras A and B, A is a subalgebra of B iff A C B and for all
oecXoftypes; x - xs,—=s and q; € As,, 1 <i <,

oalay, ... a,) =oglay,...,a,).

If A is an algebra and B C A then by B is a subalgebra of A we mean that B is
closed under the operations of A. We write A C B for A is a subalgebra of B.

A consequence of this definition is that A is a subalgebra of B iff A C B and
the inclusion map from A to B is a homomorphism from A to B. Note that the C
relation over the class of algebras is a partial ordering.

Definition 2.2.4 If f: A — B is a homomorphism then f A, the subalgebra of B
induced by f, consists of f A, together with the restrictions of the operations of B to
fA.

The set f A is closed under the operations of B, since if 0 € ¥ has type s; X -+ - X
sp — s and a; € A, 1 < i <n, then

JB<f51 a].)"'?fSn an> - fs’ JA<a17"'7an>-

Note that f is also a homomorphism from A to f A.

11



Definition 2.2.5 We define the term algebra T (or simply T) as follows. Its carrier
T is least such that if o € ¥ has type s1 X -++ x s, = s and t; € T§,, 1 <i <mn, then
(o,(t1,...,ty)) € Ty. If 0 € ¥ has type s; X --- X s, — s’ then the operation o7 is
defined by o7 (t1,...,t,) = {0, {t1, ..., tn)).

A standard result then easily follows.

Lemma 2.2.6 The term algebra T s initial in the category of algebras and homo-
morphisms. O

Definition 2.2.7 For an algebra A, we write M4 (or simply M) for the unique
homomorphism from 7 to A. An element a € A, s € S, is denotable iff there exists
a term t € 1§ such that Mt = a.

Here M stands for “meaning” and can be thought of as the meaning or semantic

function from syntax to semantics. An easy application of lemma 2.2.6 is that M 4,t =
Mg t, for allt € Ty, s € S, if A is a subalgebra of B.

Definition 2.2.8 An algebra A is reachable ifft M 4T = A, i.e., every element of A
is denotable.

An equivalent definition is that an algebra is reachable iff it has no proper subal-
gebras. An obvious consequence of this definition is that 7 itself is reachable.
We now consider several kinds of relations over algebras.

Definition 2.2.9 If A is an algebra and R is a relation over A then R is substitutive
iff the operations of A respect R: forall o € ¥ of type s; x---xs,—s" and a;, a; € A;.,
1 <1< n,

if a; Ry, a;,1 <4 <, then o{ay,...,a,) Ry o{ay,...,a,).

’n

As usual, substitutive equivalence relations are called congruences.

It is easy to see that if < is a substitutive pre-ordering over A then < N >
is a congruence. Note that if R is a substitutive pre-ordering (respectively, partial
ordering, equivalence relation) over 4, and B is a subalgebra of A, then the restriction
of R to B is a substitutive pre-ordering (respectively, partial ordering, equivalence
relation) over B.

12



Definition 2.2.10 If f: D — FE is a function over sets then the equivalence relation
over D induced by f, =y, is defined by: d; =y dy iff fdy = f ds.

If f: A— B is a homomorphism then =y is clearly a congruence over A. We make
use of this definition in giving the next one.

Definition 2.2.11 For an algebra A, the congruence over T induced by A, ~4, is

EMA.
Note that if A C B then ~4 = ~3.

Definition 2.2.12 If A is an algebra and R is a pre-ordering over A then R is ()-least
iff for all s € S and a € Ay, Q, R, a.

We will extensively use both (2-least substitutive pre-orderings and congruences.
Note that if A is an algebra and R is a relation over A then there is a least -least
substitutive pre-ordering containing R, as well as a least congruence containing R.

As there are no constraints concerning the (2 operations on congruences, it is
not surprising that not every congruence is induced by an (2-least substitutive pre-
ordering, as the next lemma shows.

Lemma 2.2.13 There is a signature > and a congruence =~ over T such that there
is no Q-least substitutive pre-ordering < over T with the property that ~ = <N ».

Proof. Let ¥ over S = {0,1} have the following operators:
(i) Qo and a of type 0;
(ii) © of type 1; and
(iii) f of type 0 — 1.
Let = be the least congruence over 7 with the property that Q; ~; fa. Then, no
other unequal terms are congruent.
Suppose, towards a contradiction, that a < as in the statement of the lemma

exists. Then
Q) =21 fQ 20 fa=yQy,

showing that ; ~; f y—a contradiction. O

We now consider derived operators, which are defined via the free algebra over a
set of generators.
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Definition 2.2.14 For an S-indexed family X of disjoint sets of context variables
not occurring in ¥, 3(X) is the signature formed by adding nullary operators z of
type s, for each x € X, s € S, to ¥. The Y-algebra 7x(X) (or simply 7 (X)) is the
restriction of Ty (x) to a ¥-algebra. For « € X, we simply write z for (x, ()) € T(X),.

We often use the letter ¢, for “context”, to stand for elements of 7'(X). The
standard result that 7 (X) is the free algebra generated by X now easily follows.

Lemma 2.2.15 Define f: X — T(X) by fsx = x. If A is an algebra and g: X — A
then there ezists a unique homomorphism h: T (X) — A such that g =ho f:

X

|

Definition 2.2.16 For a signature 3, Vs (or simply V') is an S-indexed family of
disjoint, countably-infinite sets of context variables not occurring in ¥. We often
view a set Y of variables (Y C U,cgVs) as the S-indexed family of variables Y’
defined by Y/ =V, NY.

Definition 2.2.17 A derived operator of type s; X -+ X s, — s’ is a pair

(e, (U1, ..oy 00)),

where the v; € Vi, are distinct variables and ¢ € T({vi,...,v,})y. We write
clvy,...,v,] for derived operators (c, (vq,...,v,)). For an algebra A, the derived
operation

calvr, .., 0]t Ay X oo XA — Ay

is defined by
calvr, . upl{ar, .. an) = hy e,

where h: T ({vy,...,v,}) = A is defined via lemma 2.2.15, by taking {vy,...,v,} for
X and defining g by g5, v; = a;, 1 <@ < n.

14



We write ¢ for ¢[vy, ..., v,] when the order of the variables is clear from the context,
and we often drop the algebra A from c4. A derived operator clvy, ..., v,] of type
S1 X -+ X 8, — " is a projection iff ¢ = v; and s = s;, for some 1 < i < n, and a
constant iff ¢ € Ty

The next three lemmas show how derived operators can be constructed from
constant and projection derived operators and ordinary operators.

Lemma 2.2.18 Suppose A is an algebra and a; € A, 1 < i < n.

(i) For each projection v;[vy, ..., v,] of type sy X -+ X s, = S,
’UZ'_A<CL1,...,an> = ;.
(ii) For each constant tlvy, ..., v,] of type s1 X -+ X s, — &,

tyar,...,an) = Mgy t.

Proof. (i) is immediate from definition 2.2.17, and (ii) is a simple structural
induction over 7'. O

Lemma 2.2.19 If 0 € ¥ has type s X -+ X s, = S, Glv,...,vy), 1 <i<mn, are
derived operators of type sy x ---x sl —s;, A is an algebra and a; € As;_, 1<j5<m,
then

(JT({vl,...,vm})<Cla ce ey cn>)[vl, PN ,Um]
is a derived operator of type s X -+ X s, — s and
(0{c1y- - yen))alar, -y am) =oa{cia{ar, .. am)y .- cnalar, ..., am)).

Proof. Immediate from definition 2.2.17. O

Lemma 2.2.20 If clvy,...,v,] is a derived operator of type s1 X +-+ X s, — 8,
cilvy, ..., vl ], 1 <i<n, are derived operators of type s§ x --- x sl — s;, A is an
algebra and a; € As;_, 1 <5 <m, then

(T (et (€1 - Ca)) V], - - 0]
is a derived operator of type s\ X -+ x s —s and
(cler, -y en))alar, -y am) =calcialar, ... am), ... cnalar, ... am)).
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Proof. An easy structural induction over T'({vy,...,v,}). O
Two standard lemmas concerning derived operations now follow.

Lemma 2.2.21 Homomorphisms preserve derived operations and derived operations
respect substitutive pre-orderings.

Proof.  Both parts of the lemma are easy structural inductions over T'(X), for
appropriate sets of variables X. O

Lemma 2.2.22 If A is a subalgebra of B then for all derived operators c[vy, ..., v,]
of type sy X -+ x s, =5 and a; € A;;, 1 <i < n,

calar,...,an) =cglay,...,an).

Proof. Immediate from lemma 2.2.21 and the fact that the inclusion map from A
to B is a homomorphism from A to B. O

It is now possible to define a weaker notion of substitutivity that, as we shall see,
arises naturally.

Definition 2.2.23 If A is an algebra and R is a pre-ordering over A then R is unary-
substitutive iff all unary derived operations respect R: for all derived operators c[v]
of type s — s’ and a,d’ € Aj,

if @ Ry a' then ¢{a) Ry c¢(a').

We could, of course, define the notion of n-substitutive pre-orderings, which would
be respected by n-ary derived operations, but we have no use for this generality in
the sequel.

A consequence of lemma 2.2.22 is that if R is a unary-substitutive pre-ordering
(respectively, partial ordering, equivalence relation) over A4, and B is a subalgebra of
A, then the restriction of R to B is a unary-substitutive pre-ordering (respectively,
partial ordering, equivalence relation) over B. If < is a unary-substitutive pre-ordering
over an algebra A then (< N >) is a unary-substitutive equivalence relation over A.

We now define an operation that will be employed in the definitions of notions of
program ordering and equivalence of chapters 4 and 6.
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Definition 2.2.24 If P C S, A is an algebra and R is a pre-ordering over A|P
then R, the contextualization of R, is the relation over A defined by: a Ra' iff
c(a) R, c(a'), for all derived operators c[v] of type s —p, p € P. If R is a pre-ordering
over A then P will implicitly be S in the definition of R°.

Subsets P C S can be thought of as consisting of program sorts, and derived
operators c[v] of type s — p as program contexts. Thus if R is a relation over T'|P
(programs) then two terms are related by R° iff they are related by R in all program
contexts.

The next lemma shows that, as might be guessed, R¢ is always a unary-substitutive
pre-ordering.

Lemma 2.2.25 If P C S, A is an algebra and R is a pre-ordering (respectively,
equivalence relation) over A|P then R° is the greatest unary-substitutive pre-ordering
(respectively, equivalence relation) over A whose restriction to P is included in R.

Proof. It is easy to see that R° is a pre-ordering over A and that it is symmetric
if R is symmetric. The inclusion of the restriction of R to P in R follows from the
existence of projection derived operators v[v] of type p — p, for all p € P. Next, we
show that R° is unary-substitutive. Suppose a; RS ay and c[v] is a derived operator
of type s — s'. We must show that ¢(a;) RS c¢(aqg). Let p € P and [v'] be a derived
operator of type s" — p. Then, (¢/(c))[v] is a derived operator of type s — p and

¢(c{ar)) = () (ar) By (¢{c))(az) = ¢(c{az)),

by lemma 2.2.20, and by the assumption that a; RS ay. Finally, suppose R' is a unary-
substitutive pre-ordering (respectively, equivalence relation) over A whose restriction
to P is included in R; we must show that R' C R°. Let a1 R, ay. If p € P and c[v]
is a derived operator of type s — p then c(a1) R}, c(az), and thus c(a;) R, c{az). Thus
ay RS ag, as required. O

It is easy to see that if P C S, A is an algebra and < is a pre-ordering over A|P
then (<N >)¢= (<N >9).

Lemma 2.2.26 If = is a unary-substitutive equivalence relation over an algebra A
and < 1s a pre-ordering over A that induces = then <¢ also induces =.

Proof. Since <¢ C <, <N >¢ C =. For the opposite inclusion, suppose a; =4 as,
s € S. To show that a; <¢ ay, let c¢[v] be a derived operator of type s — s'. Then
c{a1) =g c{ay), since = is unary-substitutive, and thus c(a;) <y ¢(as). Similarly,
ay <fa;. O

17



The next lemma shows that, as mentioned above, unary-substitutivity is weaker
than substitutivity. In fact there is even a unary-substitutive equivalence relation
over an algebra such that every congruence over that algebra induces a different
pre-ordering over 1.

Lemma 2.2.27 There is a signature X, an algebra A and an Q-least unary-
substitutive pre-ordering < over A such that:
(i) < is not substitutive;
(ii) The unary-substitutive equivalence relation = = < N > is not substitutive;
and
(iii) There does not exist a congruence =" over A such that

Ms tl =s Ms t2 ZﬁMs tl E’s Ms t27
forallty,t, € T, s € S.

Proof. Let ¥ over S = {0, 1,2} have the following operators:

(i) Qo of type 0;

(ii) ©1, z and y of type 1;

(iii) €22 and z of type 2; and

(iv) + of type 0 x 1 — 2.
Define the algebra A as follows. Its carrier A is defined by Ay = {Qy,w}, 4; =
{Q,z,y} and Ay = {Qy,z}. All of the nullary operations have themselves as their
values. The operation + is bistrict with reference to the Q’s, i.e., a+a’ = Qs if a = Qy
or a' = €y; on non-{) elements, it is defined by w + x = z and w + y = 5. Note that
the element w of Ay is not denotable. Let < be the least (2-least pre-ordering over A

r—1Y
0

Clearly the constant and projection unary derived operations respect <. This leaves

(v+ Q)[v], (v+x)[v] and (v + y)[v] of type 0 — 2 and (2y + v')[v'] of type 1 — 2.

Since + is bistrict, v + €y and Qy + v’ respect <. The unary-substitutivity of < then
follows, since

such that z <, y <y a:

w

Q+r=0W<sz=w+z
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and
Qo+y:QQ §292:w+y.

(i) will follow immediately from (ii), and (ii) immediately from (iii). For (iii),
suppose that such an =" exists. Then,
rT=Yy = r=1y
= z=wt+r=w+y=Q
= 2z =5,

which is a contradiction. O

As might be guessed from the proof of the previous lemma, a sufficient (but
not necessary) condition for a unary-substitutive pre-ordering over an algebra to be
substitutive is that the algebra be reachable. As an aid toward proving this, we first
give a characterization of substitutivity, which will also be used in section 2.3.

Lemma 2.2.28 Let A be an algebra and R a pre-ordering over A. Then, R is sub-
stitutive iff for all derived operators c[v, v, ..., v,] of type s X 81X ++-X s, =", n >0,
and a,a’ € A,, if a Rya' then

cla,an, ... a,) Ry c{d' aq, ... a,), for alla; € A;;,,1 <i<mn.

Proof. The “only if” direction follows from lemma 2.2.21 and the reflexivity of R.
For the “if” direction, suppose o € ¥ has type s; X -+ x s, = ', and @;,a; € A,
have the property that a; R, a}, 1 <1i < n. We must show that

olar,...,a,) Ry olay,...,a,).

’ N

If n =0 then o Ry o, since R is reflexive; so, assume that n > 1. Since R is transitive,
it is sufficient to show that

olay,...,an) Ry oldi,as,... ap)

! /
Ry o(ay,ay, a3, ..., a,)

Ry olai,...,a.).

We show a representative step in this chain:

! !/ !/ ! !/
o{ay, ... a; 1,0, Q1. .., 0,) Ry o(al, ... q; 1,a;, Giry,y...,ap).
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Let v; € Vi, 1 <4 < n, be distinct variables. Then,
(o1, .., ) [Vi, V1, o, Vi1, Vigd, -, Un]
is a derived operator of type

SiX81X"'XSi_1X81+1X"'X8n—>8,,

and thus
{a], ey Wy Ay Qi 1y - -y )
= (0(U1y. o, )){@i, QYo oy Wy Qig1y ey Q)
Ry (o, ...;u)){ah, @y oy 1y Qigty ey Q)
= U<a117'"7a2717a;7ai+17---aan>;

since a; Ry, a}. O

Lemma 2.2.29 Unary-substitutive pre-orderings over reachable algebras are substi-
tutive.

Proof. Let R be a unary-substitutive pre-ordering over a reachable algebra A. We
make use of the characterization of substitutivity given by lemma 2.2.28. Suppose
clv,vy,...,v,] is a derived operator of type s X s; X -+ X 5, = §', n >0, a,a’ € A,
a; € As;, 1 < i < n,and a Rya'. Since A is reachable, there are ¢; € T, such that
a; = My, t;, 1 <i<n. Then, (c(v,t1,...,t,))[v] is a derived operator of type s — ',
and

cla,ay, ... a,) = (c(v,ty,... t,)){a)
Ry (c{v,ty, ... t,))(a")

!
= cld,ay,...,a,),
since R is unary-substitutive. 0O

Combining lemmas 2.2.25 and 2.2.29 we have that if P C S, A is a reachable
algebra and R is a pre-ordering (respectively, equivalence relation) over A|P then
R° is the greatest substitutive pre-ordering (respectively, congruence) over A whose
restriction to P is included in R.

This section concludes with two lemmas concerning the relations over 1" that are
induced by relations over the carriers of algebras.
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Lemma 2.2.30 Suppose P C S, A is an algebra, R is a pre-ordering over A|P, and
Q is the pre-ordering over T|P defined by

1 Qpty iff Myt) Ry My ts.

Then R€ is a unary-substitutive pre-ordering over A, Q° is a substitutive pre-ordering

over T, and
t1 Q5 to iff Msty RS M to,

forallt,,to €T, s€ S.
Proof. The substitutivity of Q¢ follows from lemma 2.2.29, and

t Q5ty iff c(t1) Qpc(ta), for all cv] of type s = p, p e P
ifft M, c(t1) Ry, M, c(ts), for all c[v] of type s = p, p € P
iff ¢(Mst1) R, c(Msty), for all c[v] of type s = p, pe P
iff M, ty RS M, ts,

for all t1,t, €T, s € S. O

Lemma 2.2.31 Suppose A is an algebra, R is a pre-ordering over A, and Q) is the
pre-ordering over T defined by

tl Qs t2 ZﬁMs tl Rs Ms t2-

(i) If R is unary-substitutive then Q) is substitutive.
(ii) If Q is substitutive then

tl Qs t2 ZﬁMs tl R? Ms t27
forallt,,to €Ty, s € S.

Proof. Immediate from lemma 2.2.30, with P =5. O

2.3 Ordered Algebras

This section consists of the basic definitions and results concerning ordered algebras
that will be needed in the sequel. We begin by considering posets, cpo’s, continuous
functions and inductive pre-orderings. Ordered algebras, complete ordered algebras
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and inductive subalgebras are then defined, followed by two results concerning the
derived operations of ordered algebras, and the definitions of the ordered term algebra
and free ordered algebras. Generated inductive subalgebras and inductive reachabil-
ity are then considered, followed by two lemmas relating substitutivity and unary-
substitutivity for complete ordered algebras. The section concludes with two lemmas
concerning the pre-orderings over the terms algebra that are induced by inductive
pre-orderings over complete ordered algebras.

Definition 2.3.1 A pre-ordered set (preset) P is aset P, together with a pre-ordering
Cpover P. If p e P and P’ C P then p is an upper bound (ub) of P"iff p’ Cp p, for
all p € P’ and p is a least upper bound (lub) of P"iff p is an ub of P' and p Cp p"”, for
all ub’s p” of P'. We write P’ Cp p, for p is an ub of P'. A subset D C P is directed
iff it is nonempty and every pair of elements of D has an ub in D. If P" C P' C P
then P" is cofinal in P iff for all p’ € P', there exists a p” € P" such that p' Cp p”. A
subset P’ C P is downward-closed iff for all p’ € P'and p € P, if p Cp p’ then p € P'.
We write downp(P') for {p € P | p Cp p/,for some p' € P'}, the downward-closure
of P'.
We often drop the P from Cp and downp(P') when it is clear from the context.

Equivalently, D C P is directed iff all finite subsets of D have ub’s in D. Note
that lub’s in presets are not necessarily unique.

Definition 2.3.2 A partially ordered set (poset) P is a preset such that Cp is a
partial ordering. Such a P is pointed iff it contains a least element, 1 p. A pointed
poset P is flat iff for all p;,ps € P, p1 Cp po iff py = Lp or py = po. A complete
partial order (cpo) P is a pointed poset with the property that every directed set D
of P has alub | |p D in P.

We often drop the P from L p and | |p when it is clear from the context.

Note that all flat pointed posets are cpo’s.

Definition 2.3.3 A function f: P — () over posets is monotonic iff fp Cq fp' if
p Cp P, an order-embedding iff fp Cq fp' if p Cp p', and an order-isomorphism
iff f is a surjective order-embedding. Two posets are order-isomorphic iff there is an
order-isomorphism from one to the other. A function f: P — @ over pointed posets is
strict iff f Lp = Lg. A function f: P— () over cpo’s is continuous iff it is monotonic
and f Up D =g f D, for all directed sets D C P.
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Note that order-isomorphism coincides with isomorphism in the category of posets
and monotonic functions, and that order-isomorphisms over cpo’s are continuous.

We could just as well have worked with the larger category of w-complete partial
orders and w-continuous functions in this monograph. On the other hand, some of
our constructions, e.g., the quotienting constructions of section 2.4, do not preserve
w-algebraicity and consistent completeness, and so we cannot work in the smaller
category of cpo’s with these additional properties.

Definition 2.3.4 A pre-ordering over a poset (P,Cp) is simply a pre-ordering over
the set P. A pre-ordering < over a cpo (P, Cp) is inductive iff Cp C < and whenever
D is a directed set in (P,Cp)y and D < d, D < d.

Note the requirement that < respect the ordering Cp of P.

Definition 2.3.5 The product P, x --- X P, of posets P;, 1 < i <mn, n >0, is the
product of their underlying sets P;, ordered componentwise:

The projection functions m;: P X --- x P, — P; are monotonic. A directed set
D C P, X ---x P, has a lub iff the directed sets m; D, 1 < i < n, have lub’s, and
(Um D, ...,Um, D) is the lub of D, when it exists. Thus, if all of the P;’s are cpo’s
then so is P, X --- x P,, and the projection functions are continuous. If D; C P;,
1 <1 < n, are directed sets then so is Dy X - -+ x D,,. Finally, if f: P, X --- X P, = @)
is a monotonic function, for cpo’s P;, 1 < i < n, and @), then f is continuous iff for
all directed sets D; C P;, 1 <1 < n,

FD,....[ D) = |f(Dix---x D,).

Definition 2.3.6 If P and @ are cpo’s then [P— Q)] is the cpo of continuous functions
from P to @), with the pointwise ordering:

fCgiffforallpe P, fpC gp.

The constantly L function is the least element of [P — Q] and if F C [P — Q)] is
a directed set then (JF)p=U{fp|fe€ F}, foralpeP.
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Definition 2.3.7 An ordered ¥-algebra A is an S-indexed family of pointed posets
A (the carrier of A), together with a monotonic operation o 4: Ag, X -+ X A, — Ay,
for each o € ¥ of type 51 x -+ X 5, = §', and such that {2, 4 () is the least element of
Ag, for all s € S. Such an A is complete iff each A is a cpo and each o 4 is continuous.

We write £ 4 for the family of posets E4,), s € S, so that C 4 is a partial ordering
over A. We often write C; instead of C,4,. As usual, if ®(—) is an operation on
ordered algebras then we write ®(A) for the carrier of ®(A).

Ordered algebras can be viewed as algebras by forgetting the partial orderings,
and we will often do so without explicit comment. Thus, for an ordered algebra A,
A will stand for both the carrier of A (a family of posets) and for the carrier of
the underlying algebra (a family of sets). For example, we call an ordered algebra
reachable iff its underlying algebra is reachable (cf., inductively reachable complete
ordered algebras, definition 2.3.30).

Note that a homomorphism h: A— B over ordered algebras (i.e., a homomorphism
over the underlying algebras) is strict, since for all s € S,

hy La, =hyQu= Qg = Lg.

Definition 2.3.8 For complete ordered algebras A and B, A is an inductive subal-
gebra of B iff A is a subalgebra of B, and for all s € S, C,, is the restriction of Cp,
to Ay and |4, D = g, D, whenever D C A; is a directed set. If A is a complete
ordered algebra and B C A then by B is an inductive subalgebra of A we mean that
B is a subalgebra of A and | |4, D € B,, whenever D C B, is a directed set in Aj.
This is sensible since if B is an inductive subalgebra of A then the complete ordered
algebra B consisting of B, together with the restrictions of the operations and partial
orderings of A to B, is indeed an inductive subalgebra of A. We write A < B for A
is an inductive subalgebra of B.

Note that the relation < over the class of complete ordered algebras is a partial
ordering.

Definition 2.3.9 An order-embedding h: A— B over ordered algebras is a homomor-
phism such that h: A— B is an order-embedding. An order-isomorphism over ordered
algebras is a surjective order-embedding. Two ordered algebras are order-isomorphic
iff there is an order-isomorphism from one to the other.
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Note that order-isomorphism coincides with isomorphism in the category of or-
dered algebras and monotonic homomorphisms. Furthermore, if h: A— B is an order-
isomorphism over complete ordered algebras then h is continuous. A consequence
of the above definitions is that for complete ordered algebras A and B, A is an in-
ductive subalgebra of B iff A C B and the inclusion from A to B is a continuous
order-embedding from A to B.

Definition 2.3.10 For an ordered algebra A, the Q-least substitutive pre-ordering
over T induced by A, <4, is defined by:

ty Sas to iff Mgty Ty M ts.

Note that for any ordered algebra A, ~4 = (<4 N >4), and that if A and B are
complete ordered algebras and A < B then <4 = <3.

Definition 2.3.11 If f: P — () is a monotonic function over posets then the pre-
ordering over P induced by f, <, is defined by:

P <y piff fp1 Eg fpo.

Clearly <; respects the ordering of P, and if f is a continuous function over cpo’s
then <; is inductive. Furthermore, if h: A — B is a monotonic homomorphism over
ordered algebras then <j, is a substitutive pre-ordering over A.

Lemma 2.3.12 If A is an inductive subalgebra of B and < is a substitutive (respec-
tively, unary-substitutive) inductive pre-ordering over B then the restriction of < to
A is a substitutive (respectively, unary-substitutive) inductive pre-ordering over A.

Proof. Immediate from the definitions and lemma 2.2.22. O
Two results concerning derived operations of ordered algebras now follow.

Lemma 2.3.13 Derived operations of ordered algebras are monotonic and derived
operations of complete ordered algebras are continuous.

Proof.  Both parts are easy and standard structural inductions over T'(X), for
appropriate X’s. O

Lemma 2.3.14 If A is a complete ordered algebra and < is an inductive pre-ordering
over A|P, for P C S, then <¢ is a unary-substitutive inductive pre-ordering over A.
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Proof. By lemma 2.2.25, it is sufficient to show that <¢ is inductive. We begin
by showing that T4 C <° Suppose a T, a'. If ¢[v] is a derived operator of type
s —p, p € P, then ¢(a) C, c(a’), by lemma 2.3.13, and thus c(a) <, ¢(a'), since < is
inductive. Thus a <¢ d', as required. Now, suppose D C A, is a directed set, a € A
and D <¢ a. If ¢[v] is a derived operator of type s — p, p € P, then

(YD) =[Hcld) |de D} <, c{a),

by lemma 2.3.13, and since D <¢ @ and < is inductive. Thus |[JD < a, as required.
(|

We now give a definition and two lemmas in preparation for the definition of the
ordered term algebra.

Definition 2.3.15 Let < be the least Q-least substitutive pre-ordering over 7.

The next lemma shows that one term is less than another in < iff the second can
be formed by replacing occurrences of €2 in the first by terms.

Lemma 2.3.16 For all s € S and t,t' € Ts, t < ' iff (1) t = Qs or there is a
o€ X of type sy X -+ X s, > s and t;,t, € Ty, 1 < i < n, such that t = o(ty,..., t,),
t'=o(ty,... t,) and t; < ), 1 <i<n.

Proof. Define a relation R over T by: t Ryt iff (f) holds. It is sufficient to show
that <? = R. Clearly R C <. Furthermore, it is easy to see that R is an {)-least
substitutive pre-ordering over 7. Thus, by the leastness of <%, <® C R. O

Lemma 2.3.17 The relation <% is a partial ordering.

Proof. An easy structural induction over ¢, using lemma 2.3.16, shows that for all
teT,t'eT,,seS,ift <Pt andt <t thent=1¢. O

Definition 2.3.18 The ordered algebra OT;; (or simply OT) consists of T ordered
by <9.

If A is an ordered algebra then M4: OT — A is monotonic, since if ¢ < ' then

t <4, t', by the leastness of <%, and so M4, t T, My, t', by the definition of < 4.
Thus we have the following lemma.
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Lemma 2.3.19 The ordered algebra OT is initial in the category of ordered algebras
and monotonic homomorphisms. O

We can now generalize from the initial ordered algebra to free ordered algebras.

Definition 2.3.20 If X is an S-indexed family of disjoint sets of context variables
not occurring in ¥ then OT5(X) (or simply OT (X)) is the restriction of OT y(x) to
an ordered X-algebra.

The standard result that OT (X) is the free ordered algebra generated by X now
easily follows.

Lemma 2.3.21 Define f: X — OT(X) by fsx = x. If A is an ordered algebra and
g: X — A then there exists a unique monotonic homomorphism h: OT (X) — A such
that g = ho f:

The next lemma shows that we could have defined derived operations over ordered
algebras via free ordered algebras, instead of free algebras.

Lemma 2.3.22 If A is an ordered algebra and clvy, ..., v,] is a derived operator of
type s1 X -+ X 8, — §' then for all a; € A, 1 <1 <n,

calay,...,a,) = hgc,

where h: OT ({vy,...,v,}) = A is defined via lemma 2.3.21, by taking {vy,...,v,} for
X and defining g by gs, vi = a;, 1 <1 < n.

Proof. Simply note that A is a homomorphism from 7 ({v1,...,v,}) to the algebra
A such that g =ho f. O
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Lemma 2.3.23 If A is an ordered algebra and ci[vy,...,v,] and vy, ...

derived operators of type sy X +++ X 8, — s' such that

then for all a; € A;;, 1 <i<mn,
01A<a1,. . .,an> ;s’ CQA<G1, .. .,an>.

Proof. Immediate from lemma 2.3.22. O

,Un] are

We now consider the inductive subalgebras of complete ordered algebras that
are generated by ordinary subalgebras. This notion is then specialized to reachable

inductive subalgebras.

Definition 2.3.24 If A is a complete ordered algebra and B is a subalgebra of A (B
is an ordinary algebra) then [B], the subset of A generated by B, is the least subset
of A such that for all s € S, By, C [B]s and || D € [B]s, whenever D C [B]; is a

directed set in A,.

The next lemma shows that [B] is a subalgebra of A and thus, since [B] is closed

under A-lub’s, that [B] is an inductive subalgebra of A.

Lemma 2.3.25 If A is a complete ordered algebra and B is a subalgebra of A then

[B] is a subalgebra of A.
Proof. Let o € ¥ have type s; X -+ X s, = s'. We must show that
oA([Bls, % -+ x [Bl,,) C [Bly.
By the definition of subalgebra,
o4(Bs, X -+-x By ) C By C [Bly.
If n =0 then

ga([Blsy % -+ x [Bls,) = 04({()}) = 04(Bs, X -+ X By,);
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so, assume n > 1. It is sufficient to show that the following chain of implications
holds:

ou(Bs, X -+ x By, ) C [Bly
= 0a([Bls, X By, X -+ X By, ) C [Bly
= 04([Bls, X [Bls, X Bgy X -++ x By) C [Bly

= oa([Bls, x -+ x[Bls,) € [Bls.
We show a representative step

[Bls,

i—1

X B, X By, ,,
[Blsie x [Bls; x B

X e X X -+ x By ) C[B]y
X e X s X oo X By,) € [Bly,

by induction on [B];,. Let C be the set of all b; € [B];, such that o(by,...,b,) € [Bly,
for all b, € [Bl,, ..., bi-1 € [Bls, |, biy1 € By, ..., b, € B, . By assumption,
B,, C C. Let D C C be a directed set in A;;; we must show that | |D € C. Let
by € [Bls, ..., bi1 € [Bls,_,, bis1 € B ., by € By, . Then,

Si41o "

0'<b1,...,bi,1,|_|D,bH,1,...,bn>

= Jo({bi} x -+ x {bi-1} x D x {bis1} x -+ x {bs})
€ [B]sl,

since
o({b1} x - x{bj1} x D x{bip1} x--- x{b,}) C [Bly
is a directed set in Ay. O
Definition 2.3.26 For a complete ordered algebra A and a subalgebra B of A, [B],

the inductive subalgebra of A generated by B, is [B], together with the restrictions of
the operations and partial orderings of A to [B.

Lemma 2.3.27 If A is a complete ordered algebra and B is a subalgebra of A then
[B] is the <-least inductive subalgebra of A that contains B.

Proof. If C is an inductive subalgebra of A that contains B then C' is closed
under the defining conditions of [B], and so [B] C C. Then, since [B] and C are both
inductive subalgebras of A, it follows that [B] < C. O
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Definition 2.3.28 For a complete ordered algebra A, define R(A), the reachable
inductive subalgebra of A, to be [M4 T].

The following lemma is an immediate consequence of lemma 2.3.27.

Lemma 2.3.29 If A is a complete ordered algebra then R(A) is the <-least inductive
subalgebra of A. O

Definition 2.3.30 A complete ordered algebra A is inductively reachable iff A =
R(A).

It is easy to see that R(.A) itself is inductively reachable (clearly R(R(A)) < R(A),
and R(A) < R(R(A)) since R(R(A)) is an inductive subalgebra of A and R(.A)
is the =<-least such inductive subalgebra), and that a complete ordered algebra is
inductively reachable iff it has no proper inductive subalgebras. We can carry out
proofs by induction over inductively reachable complete ordered algebras A: if B C A,
contains M, T,, and || D € B, whenever D C B is a directed set, then B = A,.

A sufficient—but not necessary—condition for a complete ordered algebra to be
inductively reachable is that its carrier is w-algebraic and all of its finite elements are
denotable.

Three useful lemmas concerning inductive reachability now follow.

Lemma 2.3.31 There is at most one continuous homomorphism from an inductively
reachable complete ordered algebra to a complete ordered algebra.

Proof. Suppose f and g are continuous homomorphisms from an inductively
reachable complete ordered algebra A to a complete ordered algebra B, and let s € S.
We prove that fsa = gsa, for all a € Ay, by induction over A,. Let A" = {a € Ay |
fsa=gsa}. Firstly, M T, C A’ since, by the initiality of T,

fs(Mast) = Mpst = gs(Mayt),
for all t € T,. Secondly, if D C A’ is a directed set then
D =1fD=[]9D =g |D,
and thus | |D € A'. O

Lemma 2.3.32 If A and B are complete ordered algebras, A is inductively reachable
and f: A— B is a continuous homomorphism then f is also a continuous homomor-

phism from A to R(B).
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Proof. It is sufficient to show that fya € R(B)g, for all a € A, s € S, and this
follows by induction over A;. O

The next lemma shows that inductive reachability is preserved by order-
isomorphisms.

Lemma 2.3.33 If A and B are order-isomorphic complete ordered algebras and, in
addition, A is inductively reachable then B is also inductively reachable.

Proof. Since A and B are order-isomorphic, there is a continuous, surjective order-
embedding f: A— B. By lemma 2.3.32, it follows that f A C R(B). Then, since f is
surjective, it follows that B = R(B), and thus that B = R(B). O

We now consider the relationship between substitutive and unary-substitutive
inductive pre-orderings over complete ordered algebras. The following two lemmas
show that the situation is similar to that for unary-substitutive and substitutive
pre-orderings over ordinary algebras: there exist unary-substitutive inductive pre-
orderings that are not substitutive, and unary-substitutive inductive pre-orderings
over inductively reachable complete ordered algebras are substitutive.

Lemma 2.3.34 There is a signature X, a complete ordered algebra A and a unary-
substitutive inductive pre-ordering < over A such that:
(i) < is not substitutive;
(ii) The unary-substitutive equivalence relation = = < N > is not substitutive;
and
(iii) There does not exist a congruence =" over A such that

Ms tl = Ms t2 ZﬁMs tl Els Ms t27
forallt,,to €Ty, s € S.

Proof. Consider the X, A and < from the proof of lemma 2.2.27. Order each A; by
a; Ty ag iff a; = Q4 or a; = ay. Then A is an ordered algebra and C4 C <. Since A
is finite, it then follows that A is complete and < is inductive. The rest of the lemma
follows by lemma 2.2.27. O

Lemma 2.3.35 Unary-substitutive inductive pre-orderings over inductively reachable
complete ordered algebras are substitutive.
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Proof. Let < be a unary-substitutive inductive pre-ordering over an inductively
reachable complete ordered algebra A. We make use of the characterization of substi-
tutivity given by lemma 2.2.28. It is sufficient to show that for all derived operators
clv,v1,...,v,] of type s X 51 X -+ X s, = &' and a,ad’ € Ay, if a <; a’ then

cla,ar, ... a,) <g c{d',ay,...,a,), forall a; € Ag,, 1 <i < mn;

we prove this by induction on n. The case n = 0 follows from the unary-substitutivity

of <. For the induction step, suppose that c[v, vy, ..., v,.1] is a derived operator of
type s X s1 X -+ X 5,41 — s’ and that a <; a’. We show by induction over Ay . that
for all a,41 € A, .,
cla,ar, ..., an41) <g c{d',ay,... ay41), foralla; € Ag,,1 <i <n. (2.1)
Let A’ be the set of all a,11 € A, ,, such that (2.1). Suppose t € T, ; we must
show that M, t € A'". Then,
(c(v,v1, ... 00, 1)) 0,01, .., 0]

is a derived operator of type s X sy X --- X s, — &', and, by the inductive hypothesis

on n,
cla,at, ..., an, M, t) = (c{v,v1,...,05,8))(a,a1,...,a,)
<g (c(v,v1,... 00, 0)){d,a1,...,a,)
= c(d,a1,...,an, M, 1),

for all a; € As,, 1 < i < n. Now, suppose D C A’ is a directed set; we must show
that || D € A'. Suppose a; € A;,, 1 <i < n. Then,

C<a’7a17"'7a'n7|_|D> = |_|C({CL} X {a’l} Koo X {a’n} X D)
<y | Je({a'} x {ar} x -+ x {a,} x D)
= o(d,a1,...,a,| | D),
since A is complete and < is inductive. O

A consequence of lemmas 2.2.25, 2.3.14 and 2.3.35 is that if P C S, A is an
inductively reachable complete ordered algebra, and < is an inductive pre-ordering
over A|P then <¢is the greatest substitutive inductive pre-ordering over A whose
restriction to P is included in <.

This section concludes with two lemmas concerning the pre-orderings over 1" that
are induced by inductive pre-orderings over the carriers of complete ordered algebras.
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Lemma 2.3.36 Suppose P C S, A is a complete ordered algebra, < is an inductive
pre-ordering over A|P, and < is the pre-ordering over T|P defined by

ty =ty iff Myt <, M, ty.

Then <€ is a unary-substitutive inductive pre-ordering over A, <° is an Q-least sub-
stitutive pre-ordering over T, and

ty X5t iff Mgty <§ M ty,
forallt,,to €Ty, s€ S.

Proof. All that remains after applying lemma 2.2.30 is to show that <¢is inductive
and <¢is -least. The former fact follows from lemma 2.3.14. For the second, if
teT,, se S, then

M Qs =1 < M;t,

since C4 C <¢ and thus 2, X¢¢t. O

Lemma 2.3.37 Suppose A is a complete ordered algebra, < is an inductive pre-
ordering over A, and =< is the pre-ordering over T defined by

tl js t2 ZﬁMs tl Ss Ms t2-

(i) If < is unary-substitutive then < is Q-least and substitutive.
(ii) If = is substitutive then

tl js t2 ZﬁMs tl S(; Ms t27
forallt,,to €Ty, s € S.

Proof. Immediate from lemma 2.3.36, with P = 5. O

2.4 Completion and Quotienting Theorems

In this section, we present a completion theorem and two quotienting theorems for
ordered algebras, which will be employed in chapters 5 and 7. The main result
is theorem 2.4.2, a completion construction in which ordered algebras are embedded
into complete ordered algebras in such a way that certain existing lub’s are preserved.
Because the operations of complete ordered algebras are required to be continuous,
it is impossible, in general, to preserve arbitrary sets of existing lub’s. Thus, to begin
with, we need a way to specify suitably consistent sets of lub’s of ordered algebras.
This we do via families of subsets.

33



Definition 2.4.1 A family of subsets T" for a pointed poset P is a set of directed
subsets of P. Such a P is I'-complete iff for all D € I'; D has a lub in P. A function
f from a I'-complete pointed poset P to a cpo @ is I'-continuous iff it is monotonic
and forall D e T', fUD =] fD.

A family of subsets I" for an ordered algebra A is an S-indexed family of sets such
that:

(i) ' is a family of subsets of A;, for all s € S;

(ii) {a} € T, for all a € Ay, s € S; and

(iii) if o € ¥ has type s; X --- x s, = s and D; € 'y, 1 < i < n, then o(D; X
XDn) ely.
Such an A is I'-complete iff A, is I';-complete, for all s € S, and if ¢ € ¥ has type
s1 X - xs, = s and D; € I'y,, 1 < i < n, then

O’<|_|D1,...,|_|Dn> :|_|0'(D1 X - x Dy).

A homomorphism f from a I'-complete ordered algebra A to a complete ordered
algebra B is ['-continuous iff f;: Ay — By is I's-continuous, for all s € S.

In contrast to [CouRao] and [ADJ2], we associate families of subsets with indi-
vidual ordered algebras—i.e., we deal with non-uniform families of subsets. As a
consequence, we must explicitly include the singleton directed sets in our families of
subsets. See the proof of lemma 2.4.13 to see why this is necessary.

Next, we state our completion theorem, which is a variation of Theorem 1 of
[CouRao].

Theorem 2.4.2 If A is a I'-complete ordered algebra then there is a complete ordered
algebra C, together with a I'-continuous order-embedding f: A—C, such that if D is a
complete ordered algebra and g: A — D is a I'-continuous homomorphism then there
exists a unique continuous homomorphism h:C — D such that g = ho f:

" f

C
|
| h
|
|

D
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Before giving the proof of theorem 2.4.2, we give two definitions and a series of
lemmas, some of which are motivated by sections 5 and 6 of [Mar]. Until lemma
2.4.13, below, let P be a ['-complete pointed poset.

Definition 2.4.3 A subset P’ of P is closed iff the following conditions hold:
(i) Lp € P
(ii) If p C p' and p’ € P’ then p € P’; and
(iii) If D C P" and D €T then | |D € P,
For a subset P’ of P, cl(P'), the closure of P', is the least closed set containing P'.

A set P’ is closed iff it is nonempty, downward-closed and closed under I'-lub’s.
Thus, if P’ is nonempty then cl(P’) is simply the least set containing P’ that is
downward-closed and closed under I'-lub’s. Since cl(P’) is inductively defined, we
can give proofs by induction over it.

Lemma 2.4.4 For all X,Y C P:
(i) X C cl(X);
(i) el(X) = cl(cl(X)); and
(iii) of X C Y then cl(X) C cl(Y).

Proof. (i) and (ii) are obvious from the definition. For (iii), suppose X C Y. Then,
by (i), X CY C cl(Y), and so cl(Y) is a closed set containing X. Thus, by the
leastness of ¢l(X), cl(X) C cl(Y). O

Lemma 2.4.5 If P' is a nonempty, finite subset of P then cl(P'") = down(P').

Proof. It is sufficient to show that down(P') is closed under I'-lub’s. Let D C
down(P') and D € I'. Suppose, toward a contradiction, that || D ¢ down(P'). Then
for all p’ € P', there exists a dy € D such that d, [Z p', and thus, since D is directed,
there exists an ub d of {dy, | p" € P'} in D. But then dy T d C p/, for some
p' € P'—a contradiction. O

Lemma 2.4.6 If D €I then cl({LUID}) = cl(D).

Proof. First, {UD} C cl(D), and thus c¢l({{ID}) C cl(D). Second, D C
cl({UD}), since cl({lUD}) is downward-closed, and thus c/(D) C cl({UD}). O

Lemma 2.4.7 If X is a set of subsets of P then cl(UX) = cl(Upcx cl(P)).
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Proof. First, UX C Uprcx cl(P'), and so cl(UX) C cl(Uprex cl(P')). Second, for
all P' € X, cl(P') C ¢cl(UX), and thus cl(Upex cl(P') C c(UX). O

Lemma 2.4.8 If P is a nonempty subset of P and g is a I'-continuous function from
P to a cpo Q then g P' has a lub iff g cl(P') has a lub, and they are equal if they exist.

Proof. It is sufficient to show that for ¢ € @, ¢ is an ub of g P iff ¢ is an ub of
g cl(P'). The “if” direction is trivial, since P’ C ¢l(P'). For the “only if” direction,
suppose ¢ is an ub of g P'. Let P" be {p" € cl(P') | gp" C ¢q}. Clearly P' C P".
Suppose p” € P" and p C p", for some p € P. Then gp C ¢gp" C ¢, showing that
p € P". Suppose D C P" and D € I'. Then g||D = ||gD LC gq, since g is I'-
continuous, showing that | | D € P". Thus P" = ¢l(P'), and so ¢ is an ub of g cl(P").
O

Definition 2.4.9 A subset P’ of P is continuously directed iff for all I'-continuous
functions g: P — @, for cpo’s @), g P’ has a lub in Q.

Clearly, directed sets are continuously directed. To see that the converse is false,
let P be the poset

so that © = [ Jw and W' = {n' | n € w} has no lub, and let I' = {w}. Then P itself is
continuously directed, by lemma 2.4.8, but is obviously not directed.

Returning to the general case, we can now give our completion construction for
posets.

Lemma 2.4.10 Let C be the least set of closed subsets of P such that

(i) cl({p}) € C, if p € P; and

(i) cl(UX) € C, if X is a directed subset of C, ordered by inclusion.
Define f:P — C by fp = cl({p}). Then C, ordered by inclusion, is a cpo, f is a
['-continuous order-embedding, all elements of C' are continuously directed, and for all

[-continuous g: P—Q, for cpo’s Q, the function P'+— || g P’ is the unique continuous
h:C'— @ such that ho f = g.
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Proof. Clearly cl({Lp}) = {Lp} is the least element of C, and c/(lJX) is the lub
of any directed X C C. Since cl({p}) = down({p}), by lemma 2.4.5, it is easy to see
that f is an order-embedding. If D € I" then

FUD = da({[|D})
= cl(D) (lemma 2.4.6)

= c(J{d})

deD

= cl( | d({d})) (lemma 2.4.7)

deD
=]rD,
showing that f is ['-continuous.

Next, we show that all elements of C' are continuously directed. Suppose g: P— (@)
is I'-continuous, for a cpo ). We show, by induction over C, that g P’ has a lub in
Q, for all P" € C. Let C" = {P' € C | |Ug P exists}. Clearly cl({p}) € C, for
all p € P, since gp is the lub of g {p}, and thus, by lemma 2.4.8, is also the lub of
gcl({p}). If X C C" is directed then {[JgP' | P' € X } is directed, and thus has a
lub ¢ in Q. Furthermore, {|JgP' | P’ € X } and ¢g (JX) share the same ub’s, and
thus ¢ is the lub of ¢ (UX). Finally, by lemma 2.4.8, ¢ is also the lub of g ¢/(U X),
showing that c¢l(JX) € C".

For the universal property, suppose g: P — @ is I'-continuous, for a cpo (). Define
h:C — @ by hP' =|]gP'. Clearly h is monotonic, and

h(fp) =g c({p})
=|]g{p} (lemma 2.4.8)
=4gp,
for all p € P. For continuity, if X C C'is directed then

hl|X =heJX)

=g e(UX)

=| | |gP | P eX}

—|nx.
Finally, suppose h': C'— @ is continuous and h’' o f = ¢g. We show by induction over
C that hP' = W P, for all P € C. Let C' = {P' € C' | hP' = h' P'}. First, for all
peEPp,

hel({p}) = h(fp) =gp =N (fp)=h c({p}),
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showing that cl({p}) € C". Second, if X C C" is directed then

hel(JX)=h| | X =||hX =| WX = 1| |X = a(JX),
showing that c/(UX) € C'. O

If T is empty (or contains only singletons) then the C' of lemma 2.4.10 consists
of all of the downward-closed, directed subsets of P, and is thus the usual ideal
completion. In general, however, the elements of C' need not be directed sets, as can
been seen from the above example, in which the non-directed poset P is an element
of its own completion. It would be nice to give a direct characterization of C', in the
general case, and I cannot resist making the following conjecture.

Conjecture 2.4.11 The cpo C' of lemma 2.4.10 consists of the set of all closed,
continuously directed subsets of P.

The following lemma, concerning the internal structure of the completion C' of P,
will not be used until chapter 7, but is included here for convenience.

Lemma 2.4.12 Let C be the cpo defined in the statement of lemma 2.4.10. If
cl(P") € C, for a nonempty, finite subset P' of P, then there exists a p' € P’ such
that cl(P") = cl({p'}).

Proof. By lemma 2.4.5, ¢/(P') = down(P'), and thus cl(P') = down(P"), where
P" is the set of maximal elements of P'. It is thus sufficient to show that |P"| = 1.
Make P" into a cpo, @, by adding a lower bound, 1, and two incomparable ub’s, z
and y. Formally, let @) be P" U{L,z,y}, ordered by ¢ C g iff

(i) ¢ = L; or

(ii) g2 = v and ¢, # y; or

(iii) ¢ = y and ¢; # x; or

(iv) @1, 2 € P" and 1 = .
Forpe P,let §, ={p" € P" | pCp"}. Define f: P — @ by:

r ifd, = 0;
fp=4qp" ité,={p"};
1L if |6, > 2.

Thus y ¢ fP. It is easy to see that f is monotonic. For I'-continuity, suppose
D eTl. If DZ down(P") then flID = x = || f D; so, suppose D C down(P").
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Since down(P") is closed, LJD € down(P"), and thus 0, # 0. If 0] )p| = 2 then
fUD = L =||fD; so, assume (5|_|D = {p"}, for some p" € P". If thereisa d € D
such that |04 = 1 then f|UD = p” = |l f D; so, suppose, toward a contradiction,
that [04] > 2, for all d € D. Then Z = (Uyep 04) — {p"} is a nonempty subset of P”,
and for all z € Z, there exists a d, € D such that d, £ z. But, since D is directed,
there exists an ub d of {d, | 2 € Z} in D, and thus d, C d C z, for some z € Z—a
contradiction. Thus f is indeed I'-continuous, and, by lemma 2.4.10, f down(P")
has a lub in Q. But P”" C f down(P") and © ¢ f down(P"), and thus |P"| = 1, as
required. O

Lemma 2.4.13 Suppose A is a I'-complete ordered algebra. If o € ¥ has type s; X
o X sy, =8 and A} C A, 1 < <n, are nonempty then

cl(o(cl(A}) x -+ x cl(A}))) = cl(o(A] x ---x A))).

Proof. Showing that the rhs is a subset of the lhs is trivial by lemma 2.4.4. For the
other direction, it is sufficient to show that

o(cl(A}) x -+ x cl(A},)) C cl(o(A] x -+ x Ay)).
If n =0 then o{()} C cl(c{()}); so, assume n > 1. Clearly,
O(Af % - x AL) C el(o(A] x - x AL),
and thus it is sufficient to show that the following chain of implications holds:

o(A] X+ x A) Cello(A] x -+ x A))
= o(c(A]) x Ay x - x Al) Cel(o(A] x ---x A))
= o(cl(A]) x cl(A)) x Ay x -+ x Al) C cl(o(A] x -+ x A)))

= o(cl(A]) x - x cl(A])) C cl(o(A] x -+ x A))).
We show a representative step

o(cl(A]) x o xel(Af ) x A x A, x - x AL) Ccl(o(A] x -+ x AL))

U
o(cl(A}) x - x cl(Aj_y) x cl(A]) x Aj, | x -+ x AT) Ccl(o(A] x -+ x A})),

by induction over cl(A}). Let B be the set of all a; € ¢l(A}) such that

olay,...,a,) € cl(o(A] x --- x A))),
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for all a; € cl(A), ..., a;1 € cl(Aj_)), a1 € Af,y, ..., a, € A},. By assumption,
Al C B. Furthermore, B is downward-closed, since ¢ is monotonic and cl(o(A} x

-+ x Al)) is downward-closed. Since A} is nonempty, it only remains to show that B
is closed under I'-lub’s. Suppose D C B and D € I'y;; we must show that | |D € B.
Let a; € cl(A}), ..., aim1 € cl(A]_ ), aiy1 € Aly, ..., ap € Al Then,

olay,.. .,ai,l,UD,aiH, cey Qg

=|Jo({ar} x -+ x{ai1} X D x {ais1} x -+ x {an})
€ cl(o(A] x -+ x A))),

since A is I'-complete and

o({a1} x ---x{a; 1} x D x{aj1} x--- x{a,})

is a subset of cl(o(A] x -+ x Al)) and an element of I'y. (Here, it is essential that
" contain all singleton sets.) O

Proof of theorem 2.4.2. We begin by defining a complete ordered algebra B,
together with a homomorphism f: A — B. For s € S, B, is the set of all closed
subsets of Ay, ordered by inclusion, and for o € ¥ of type s X -+ X s, — ¢ and
Al e B, 1 <i<n,

(A, ..., AL) = cl(o4(A] x -+ x A)).
Then, for s € S,

Q5() = cl(Q4{()}) = cd({La}) = {La}

is the least element of B,. The monotonicity of the operations follows from lemma
2.4.4. Thus B is an ordered algebra.

If B C By, s € S, then ¢l(JB’) is the lub of B’, and so B is a cpo (actually, a
complete lattice). Suppose o € ¥ has type sy X ---x s, —s and B, C By,, 1 <i<n,
are nonempty. Then,

s(|B1,---, | |Bn) = os(c(B),- UB’)
= cl(oa(cl UB' - xd(JBy)))
= cl(oa(JBy x -+~ x UB') (lemma 2.4.13)
= c(Ufou(Ay x --- x A4) [ A; € Bj})
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= cl((J{cl(oa(A] x --- x A})) | A; € Bi }) (lemma 2.4.7)
= [ clloa(4] x - x A)) | 4} € Bj}
= |_|O'B<B1,...,B7I1>,

and thus B is complete.

Define f: A— B by fya = cl({a}), fora € A, s € S. Then, f is a homomorphism
from A to B, since if 0 € ¥ has type s; x -+ x s, = s and a; € A;;, 1 <i < n, then

fsoalar, ... a,) = cl({oa{ar,...,an)})

(calfar} x -+ x {an}))

= cl(oa(cl({ar}) x -+- x cl({an}))) (lemma 2.4.13)
(cl({ar}), .-, cl({an}))

(fsy 1y -y fs, Qn).

= ¢l

Q

B

B has lub’s of too many sets, in general, and thus we take the <-least inductive
subalgebra of B containing f A as our candidate for C, i.e., we define C to be [f A]
(see definition 2.3.26). Since C is a subalgebra of B, f is also a homomorphism from
AtoC. Forall s € S, C, is the least subset of B, such that

(i) fea=cl({a}) € Cy, if a € Ay; and

(i) UX = cl(UX) € C, if X C O is directed.

Thus we can apply lemma 2.4.10 and conclude that f is a [-continuous order-
embedding from A to C.

It remains to show the universal property of (f,C). Suppose g: A — D is a I'-
continuous homomorphism, for a complete ordered algebra D. By lemma 2.4.10, we
can define a continuous function h: C'— D by hy A" = || g,A’, for A" € Cy, s € S, and,
furthermore, ho f = g.

Next, we show that A is a homomorphism from C to D. Let o0 € ¥ have type
Sy XX 8, =8 For Cl C Oy, 1<i<n,let ®(C],...,Cl) abbreviate the assertion
that for all ¢; € C}, 1 <i < mn,

hg oc{ci,...,cn) = oplhs, c1,. .., hs, cp).

Ifa; € A, 1 <1 < n, then

hg oc(fs, a1,y ..., fs, an) = hy cl(oa(cl({ar1}) x -+ x cl({an})))
= hy cl(oa({ar1} x --- x{an})) (lemma 2.4.13)
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= hy cl({oala,...,a,)})

= (o oalans )

= gy oalay,...,a,)

= 0p(gs, a1, - -, g, On)

= op(hs, (fs, a1), -, s, (fs, an)),

showing that ®(fs, As,, ..., fs, As,) holds. If n =0 then hy oc() = op(); so, assume
n > 1. It is sufficient to show that the following chain of implications holds:

q)(fslAslv"'stnAsn) = q)(0817fs2AS27"'7fsnAsn)
= q)(CSIJCS2JfS3AS37"'JfSnAsn)

We show a representative step

q)(CSU . 'JCSi_Ufsi Aspfsi_H A8i+17 . '7f5n Asn)
:> q)(CsU'"JCSi_17CSi7fsi+1ASi+17"'st A )

n Sn

by induction over Cy,. Let C” be the set of all ¢; € Cj, such that
hg oc{ci,...,cn) = oplhs, c1,. .., hs, cp),

forall ey € Cy,, ..., i1 € Oy, Cip1 € fopy Asiyry -+ G € fi, Ag,. Then f,, Ay, C
C', and C'" is closed under lub’s of directed sets, since h is continuous and C and D
are complete. Thus we have shown that h:C — D is a homomorphism.

Finally, we can apply lemma 2.4.10 once again to show that h is the unique
continuous homomorphism from C to D such that ho f = g. This completes the
proof of theorem 2.4.2. O

We now introduce some notation that is based upon theorem 2.4.2.

Definition 2.4.14 Let A be a ['-complete ordered algebra. We write A" (the T-
completion of A) and em for the complete ordered algebra C and the I'-continuous
order-embedding f, respectively, that are given by the proof of theorem 2.4.2. If
g: A—D is a I'-continuous homomorphism, for a complete ordered algebra D, then we
write g' for the unique continuous homomorphism from A" to D such that g = g'oem.
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In the remainder of this section, we present two quotienting constructions: one for
ordered algebras and substitutive pre-orderings, and the other for complete ordered
algebras and substitutive inductive pre-orderings.

Theorem 2.4.15 (Courcelle and Nivat) Let A be an ordered algebra and < a
substitutive pre-ordering over A that respects the ordering of A, i.e., T, C <. There
is an ordered algebra B, together with a surjective monotonic homomorphism f: A—B
with the property that < = <z, such that if C is an ordered algebra and g: A — C s
a monotonic homomorphism with the property that < C <, then there is a unique
monotonic homomorphism h: B — C such that g = ho f:

f

A

B
|
|
| h
C

Proof. Let = be the congruence over A induced by <, i.e., = = < N >. We define
an ordered algebra B as follows. For s € S, B; = A;/=;, and Cp, is defined by

[al]Es Es [an]Es iff ai Ss ag.
If o € ¥ has type s; X --- X s, — s’ then the operation op is defined by

os{[a1]=s,, - s [an]=s,) = [oalar, ... a,)]=s.

It is easy to see that Cpg is well-defined on the equivalence classes and is a partial
ordering, that the operations are well-defined and monotonic, and that

Qs = [Qsu]=s = [La,]=s = Lb.,

for all s € S.
Next, we define a surjective homomorphism f: A — B by fsa = [a|=s;. Then f is
monotonic, since C4 C <, and < = <;, since

ay Ss as IH [a'l]Es Es [a2]Es IH fs a1 Es fs as,

for all a;,ay € Ay, s € S.
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It remains to show the universal property of (f,B). Let C and ¢ be as in the
statement of the theorem. Define a monotonic homomorphism h: B—C by h; [a]|=, =
gs a. Clearly, h is well-defined on the equivalence classes and monotonic, since < C <.
Suppose o € ¥ has type s; X -+- x 5, = s and a; € A;,, 1 <i < n. Then,

hy op([ai]=s,, - - [an]=s,) = he [oalay, ..., a) )=y
= gy oalay,...,a,)
= 0c(gs, @1, -+, Js, On)
= oc(hs, [a1]=s,, - - -, bs, [an]=s,)-

Thus A is, indeed, a homomorphism. From the definitions of A and f, it follows
immediately that ¢ = h o f. For the uniqueness of h, let A': B — C be a monotonic
homomorphism such that ¢ = h' o f. Then,

hs[a]=s = h(fsa) = gsa = h(fs a) = I [a]=,,
for all a € Ay, s € S, showing that h = h'. O
We now give some notation that is based upon theorem 2.4.15.

Definition 2.4.16 Let A be an ordered algebra and < a substitutive pre-ordering
over A such that C4 C <. We write A/< (the quotient of A by <) and ¢t for the
ordered algebra B and the surjective monotonic homomorphism f, respectiv_ely, that
are given by the proof of theorem 2.4.15. If g: A — C is a monotonic homomorphism
with the property that < C <, then we write ¢/< for the unique monotonic homo-
morphism from A/< to C such that g = (¢/<) o qt.. We often drop the subscript <
from ¢t. when it is clear from the context. B

Note that if < is an Q-least substitutive pre-ordering over 7 then C o = <% C <,
and so OT /< is well defined. Clearly, such an OJ /=< is reachable.

We now present two simple corollaries of theorem 2.4.15, followed by the second
of our quotienting theorems, theorem 2.4.19.

Corollary 2.4.17 Let A be an ordered algebra and < a substitutive pre-ordering over
A such that £, C <. Let A C Ay and a € A, s € S. Then, a is a lub of A" in
(As, <s) iff qt,a is the lub of qt, A" in (A/<)s.

Proof. Follows easily from the surjectivity of ¢t and the fact that a; <; a9 iff
qt,an Ty qt,ay, for ay,a0 € Ay, s € S. O
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Corollary 2.4.18 If A is a reachable ordered algebra then A is order-isomorphic to
OT /=4.

Proof. By theorem 2.4.15, the following diagram commutes:

It is sufficient to show that M 4/=< 4 is a surjective order-embedding. The surjectivity
of M4/=<4 follows from the surjectivity of M4, and M 4/= 4 is an order-embedding
since gt is surjective and <, = <4. O

Theorem 2.4.19 (Courcelle and Raoult) Let A be a complete ordered algebra
and < a substitutive inductive pre-ordering over A. There is a complete ordered
algebra B, together with a continuous homomorphism f: A— B with the property that
< = <y, such that if C is a complete ordered algebra and g: A — C is a continu-
ous homomorphism with the property that < C <, then there is a unique continuous
homomorphism h: B — C such that g =ho f:

A

Proof. By theorem 2.4.15, we know that ¢t: A — A/< is a surjective monotonic
homomorphism (C4 C < since < is inductive). Define a family of subsets I" of A/<
by

I's={qt,D| D C A, is a directed set }.
If a € A;, s € S, then {qt,a} = qt,{a} € I';. If 0 € ¥ has type sy x -++ X 5, = &'
and D; C A,,, 1 <i < n, are directed sets then

o((qty, Dy) x ---x (qt, Dy)) = qtyo(Dy x---x D,) €ly.
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Thus I' is well-defined. Next, we show that A/< is I'-complete. Suppose D C A,
s € 5, is a directed set; we show that ¢t || D = ] qt, D. Clearly gt, || D is an ub
of gt, D. Suppose gt a is an ub of ¢t, D. Then D <, a and, since < is inductive,
LD <sa. Thus ¢t, || D C; gt, a, as required. Suppose o € ¥ has type s; X- -+ X s, —¢'
and D; C A,,, 1 <1 < n, are directed sets. Then,

ol Jats, Dr,-...,| |at,, Du) = olat,, | | D,-..,at,, | | Dn)
=gty o |D1,...,| | Dn)
= qty| |o(Dy % ---x D)
=| gty o(Dy x---x D)
= Jo((at,, D1) x -~ x (gt,, Dn)).
By theorem 2.4.2, we know that em: A/< — (A/<)" is a [-continuous order-
embedding into a complete ordered algebra. We take (A/<)" as our candidate for B

and em o gt as our candidate for f. Clearly f is a monotonic homomorphism. For
continuity, let D C A,, s € S, be a directed set. Then,

ems(qt, |_|D) = emy |_| qt, D = |_| ems(qt, D),
since gt, D € T'y. To show that < = <y, let a;,ay € Ay, s € S. Then,
a Ss o IH qts a1 Es qts as IH ems(qts al) Es ems(qts a'2)7

since em is an order-embedding.
It remains to show the universal property of (f,B). Let C and ¢ be as in the
statement of the theorem.

A

By theorem 2.4.15, we know that (f) ¢/< is the unique monotonic homomorphism
from A/< to C such that g = (g/<)oqt. To see that g/< is I'-continuous, let D C A,

46



s € S, be a directed set. Then,

(9/<)sats D = (9/<)s(qts| | D)
= gs|_|D
= |_|gsD
= (g/<)s(ats D),

since ¢ is continuous. Thus, by theorem 2.4.2, we know that (1) (¢/<)" is the unique
continuous homomorphism from (A/<)'" to C such that g/< = (g/<)" o em. We take
(9/<)" as our candidate for h: B—C. Clearly g = ho f,i.e., g = (9/<)  oemogqt. For
uniqueness, suppose h': B — C is a continuous homomorphism such that g = b’ o f,
ie.,g=hoemogqt. Then g/< = h'oem, by (1), and thus A’ = h, by (f) and the
continuity of A'. O

We now give some notation that is based upon theorem 2.4.19.

Definition 2.4.20 Let A be a complete ordered algebra and < a substitutive in-
ductive pre-ordering over A. We write A//< (the inductive quotient of A by <)
and ¢t for the complete ordered algebra B and the continuous homomorphism f,
respect?vely, that are given by the proof of theorem 2.4.19. If g: A—C is a continuous
homomorphism with the property that < C <, then we write g//< for the unique
continuous homomorphism from A//< to C such that g = (9//<) o qt..

The section concludes with the lemma that inductive quotients of inductively
reachable complete ordered algebras are themselves inductively reachable.

Lemma 2.4.21 If A is an inductively reachable complete ordered algebra and < is a
substitutive inductive pre-ordering over A then A//< is also inductively reachable.

Proof. By lemma 2.3.33, it is sufficient to show that A4//< and R(A//<) are order-
isomorphic. Let ¢ be the inclusion from R(A//<) to A//<, so that ¢ is a continuous
homomorphism from R(A//<) to A//<. By lemma 2.3.32, ¢t: A — A//< is also a
continuous homomorphism from A to R(A//<), and if a1 < ay, for a;,ay € As,
s €9, then gt a1 Eay<), qtsaz, and thus gt; a1 Egay<), gtsaz. Then, by theorem
2.4.19, we may let h: A//<— R(A//<) be the unique continuous homomorphism such
that gt = h o gt.
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A//<

qt
id 10h
qt
A Al/<
? h
qt
R(A//<)

By lemma 2.3.31, hoi = idp(a//<). Also by lemma 2.3.31, it follows that (ioh)ogt = gt,
and thus ¢ o h = id(4//<), since, by theorem 2.4.19, i1d(4//<) is the unique continuous
homomorphism over A//< such that ¢t = id(4/<yo qt. O
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Chapter 3

Full Abstraction and Least Fixed
Point Models

This chapter is devoted to the definitions and elementary results concerning full ab-
straction and least fixed point models. This material is based upon the universal
algebra of the previous chapter, and the combination of these two chapters forms the
foundation upon which the remainder of the monograph is built.

Although we will apply this material to several programming languages in subse-
quent chapters, it is convenient to have an example programming language available
in this chapter, in order to motivate the various definitions and results. For this
purpose, we consider an imperative programming language skeleton with null, se-
quencing, conditional and iteration statements. Formally, consider a signature X over
a single sort, %, that contains the following operators, where FExp is some unspecified
set of boolean expressions:

(i) Q4 and skip of type %;
(ii) while E do—od of type x — %, for all E' € Ezp; and

(iii) ; and if E then—else—fi of type x X x — %, for all E' € Exp.

Since there is only one sort, we drop the sort subscripts from carriers, relations, etc.,
when considering this language below.

3.1 Full Abstraction

In this section, we formalize what it means for an algebra or ordered algebra to
be correct or fully abstract. We actually consider three kinds of correctness and full
abstraction: equational, inequational and contextual. The first and third are relations
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between algebras and congruences over 7, whereas the second is a relation between
ordered algebras and ()-least substitutive pre-orderings over 7. As usual, we think
of these congruences and pre-orderings over the term algebra as notions of program
equivalence and ordering, respectively.

Definition 3.1.1 Let ~ be a congruence over 7 and A be an algebra. Then A is
~-equationally correct (or simply =s-correct) iff ~4 C =, and ~-equationally fully
abstract (or simply ~-fully abstract) iff x4 = =.

Definition 3.1.2 Let < be an {2-least substitutive pre-ordering over 7 and A be an
ordered algebra. Then A is <-inequationally correct iff <4 C <, and <-inequationally
fully abstract iff <4 = <.

It is easy to see that equational (respectively, inequational) full abstraction implies
equational (respectively, inequational) correctness, but that the converse, in general,
fails. Note that if < is an ()-least substitutive pre-ordering over 7 and A is a =<-
inequationally fully abstract (respectively, <-inequationally correct) ordered algebra
then A is ~-fully abstract (respectively, as-correct), where = is the congruence over
T induced by <: & =<nN .

Suppose that we are given a notion of program equivalence = for our example
programming language, i.e., a congruence over 7, with the expected property that

while E dot od ~ if E thent; while E dot od else skip fi,

for all boolean expressions £ € Ezp and terms t € T. Then every while-loop will
have the same meaning as its expansion in any ~-fully abstract algebra A, and thus
for all £ € Exp, the equation

while E do a od = if E then a; while E do a od else skip fi

will hold for all elements of A that are denotable. But it is also reasonable to ask
that this equation hold for all a € A, i.e., that the unary derived operations

while E do v od[v]

and
if E thenv; while E do v od else skip fi|v]

be equal, for all £ € Fzp. This suggests that we consider the following generalization
of equational full abstraction from terms to contexts, or, more precisely, to derived
operators.

50



Definition 3.1.3 Let ~ be a congruence over 7 and A be an algebra. Then A is
~-contextually correct iff for all derived operators c;[vy,...,v,] and vy, ..., v,] of
type sp X -+ X 8, — &,

ifClA =Coy then for all t; € Tsi, 1< <n, Cl<t1, . 7tn> gl Cg<t1, . ;tn>7

and A is ~-contextually fully abstract iff for all derived operators c;[vy,...,v,| and
colv1, ..., vp] of type s1 X -+ X 5, = &,

Cia = Coa iff for all tz € Tsi, 1 S 1 S n, Cl<t1, Ce 7tn> g (32(751, Ce 7tn>

Thus an algebra A is equationally fully abstract with reference to a congruence ~
iff ground equations (equations with no free variables) hold in A4 exactly when they
hold in =, and contextually fully abstract iff universally quantified equations hold in
A exactly when they hold in ~.

Note that we could also define the notions of inequational contextual full abstrac-
tion and correctness, in the obvious way.

It is easy to see that contextual full abstraction implies contextual correctness
but that the converse, in general, fails. Furthermore, contextual full abstraction (re-
spectively, contextual correctness) implies full abstraction (respectively, correctness),
since for every term ¢ of sort s, t[] is a constant derived operator of type s. The next
two theorems show that full abstraction does not, in general, imply contextual full
abstraction, but that correctness does imply contextual correctness.

Theorem 3.1.4 There is a signature X, a congruence =~ over T, and a ~-fully ab-
stract, complete ordered algebra that is not ~-contextually fully abstract.

Proof. Let ¥ over S = {x} have the following operators:

(i) Q, of type x; and

(i) f and g of type x — *.
Since there is only one sort, we drop the sort subscripts from carriers, relations, etc.,
below. Let ~ be the greatest congruence over 7 (all terms are congruent). Define a
complete ordered algebra A as follows. It’s domain A is the two-point cpo {L, T},
where 1. C T. It’s operations are defined by:

Q=1;
fa=1;

L ifa=1,
g“:{T ifa=T.
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It is easy to see that Mt = L, for all ¢ € T, and thus that A is ~-fully abstract. If
veV, (f(v))[v] and (g(v))[v] are unary derived operators, and

(f(N){t) = (9(0)){D),

for all t € T', but
(f)a=f#g=(9(v)a

showing that A is not contextually fully abstract. O

Note that the complete ordered algebra A in the previous proof is not inductively
reachable. In chapter 5, we will see that inductive reachability is a sufficient condition
for full abstraction and contextual full abstraction to coincide.

Theorem 3.1.5 Let = be a congruence over T. An algebra is =-correct iff it is
~-contextually correct.

Proof. Let A be an algebra. The “if” direction is trivial. For the “only if” direction,
suppose ¢;[vy, ..., v,] and cluy, ..., v,] are derived operators of type s; X -+ X s, = ',
and that ¢; 4 = ca4. Then, for all t; € T,., 1 <7 < n,

Ms/ Cl<t1,...,tn> = Cl<Msl tl,.. 7Msn tn>
= CQ(MSI tl;-- 7Msn tn>
= Msl 02<t1,...,tn>,

and thus
Cl<t1, Ce ,tn> N 62<t1, e ,tn>,

since A is ~-correct. O

Mulmuley has constructed a fully abstract model of the combinatory logic version
of PCF that fails to satisfy the usual equational axiom for the K combinator [Mul].
This equation does hold, however, in the notion of program equivalence for PCF, and
thus Mulmuley’s model is not contextually fully abstract. It would be interesting to
find other examples of fully abstract models that fail to be contextually fully abstract.
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3.2 Least Fixed Point Models

In this section, we say what it means for a complete ordered algebra to be a least
fixed point model. This is not an intrinsic property of complete ordered algebras,
but is expressed via the satisfaction of families of least fixed point constraints. We
consider two kinds of least fixed point models: ordinary and contextual. The latter
is the natural generalization of the former from terms to contexts, or, more precisely,
to derived operators. We also consider the satisfaction of families of least fixed point
constraints by (2-least substitutive pre-orderings over the term algebra.

We begin by considering our example imperative programming language again.
Conventionally, a model A of this language, i.e., a complete ordered algebra, should
assign a while-loop while E do t od the meaning | |,., w"(E,t), where w"(E,t) is the
w-chain in A defined by

w'(E,t) = L,
w"tH(E,t) = if Ethen (M t);w"(E,t) else skip fi.

This requirement can be expressed syntactically, as follows. Define an w-chain
W™(E,t) in the ordered term algebra by

WOE,t) = Q,
W™ B, t) = if E thent; W"(E, t) else skip fi,
so that w™(E,t) = M W™(E,t), for all n € w. Then we require that

M while E dotod = | | MW"™(E,t).

ncw

This situation is quite general, and we are led to the following definitions.

Definition 3.2.1 A family of least fized point constraints ® is an S-indexed family
of sets such that for all s € S, &, C Ty x PTy, and for all (¢,7") € &, T" is a directed
set in OT,. We write t=||T" instead of (¢,7") for elements of ;.

Definition 3.2.2 Let ® be a family of least fixed point constraints and A be a
complete ordered algebra. Then A is a ®-least fized point model (or A satisfies ®) iff
forall t=| 1" € &,, s S, Myt =M, T".

Note that if 7" C OT, is a directed set and A is an ordered algebra then M, 1" C
A, is also a directed set.
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The family of least fixed point constraints ® for our example language would be
{while E dot od= l{ W"(E,t) | n€w} | E € Ezp,t € T }.

Next, we introduce a natural notion of closure, under the operations of the term
algebra, for families of least fixed point constraints.

Definition 3.2.3 A family of least fixed point constraints ® is closed iff for all o € X
of type 51 x -++ x5, = ¢, if t;,= 1] € &,,, 1 < i <mn, and T" is a cofinal subset of
o(T] x ---xT!) then o(ty,...,t,)=UT" € .

We write ® for the closure of @, i.e., the least closed family of least fixed point
constraints containing .

This closure operation is well-defined, because cofinal subsets of directed sets are
themselves directed. Since ® is defined inductively, we can give proofs by induction
over ®. The next lemma shows that ® has the usual closure properties.

Lemma 3.2.4 (i) 2 C ®
(i) B = ©

(iii) if @, C Py then &, C B,

Proof. (i) and (ii) are immediate from the definition. For (iii), suppose ®; C ®,.

Then ®; C ®,, by (i), and so ®, is a closed family that contains ®;. But ®; is the
least such family, and thus ®; C ®,. O

Three lemmas concerning closed families of least fixed point constraints now follow.
The first two concern “singleton” constraints of the form ¢=| |{¢}, and the third shows
that if a complete ordered algebra satisfies a family of least fixed point constraints
then it also satisfies the closure of that family of constraints.

Lemma 3.2.5 If ® is a closed family of least fixed point constraints then t=||{t} €
b, forallt €Ty, s € S.

Proof. By structural induction over T'. Define 7" C T by 17 = {t € T; | t={t} €
®, }. Suppose o € ¥ has type s; X --- X 5, = ', and t; € T, , 1 < i < n. Then
ti=L{t;} € P, 1 <i<n, and, since ® is closed,

ot et =L, )} = ol b =Ue () % - X {ta)})
€ Dy

Thus o(ty,...,t,) € TV, as required. O
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Lemma 3.2.6 The family of least fixed point constraints ® defined by
o, ={t=|{t} |t e Ts}
is the least closed family of least fized point constraints, i.e., ® = ().

Proof. By lemma 3.2.5 it is sufficient to show that ® is closed. Suppose o € ¥ has
type 51 X --- X s, = &', and t;=|{t;} € P,., 1 <7 < n. Then,

U({tl} Koo X {tn}) = {0<t17 s 7tn>}
is the only cofinal subset of itself, and o (t1,...,t,)=U{o{t1,...,t,)} € Py. O

Lemma 3.2.7 Let ® be a family of least fixed point constraints and A be a complete
ordered algebra. If A satisfies ® then A satisfies ®.

Proof. By induction over ®. Define ® C ® by
o, ={t=UT" € ®, | Myt =| | M, T"};

we must show that ® is closed (clearly it contains ®). Suppose o € ¥ has type
51X xXs,—s', =17 € @, 1 <4 < n,and T" is a cofinal subset of o (17 x- - -xT}).
Then,

M510'<t]_,...,t>: <Mslt17---7Msntn>
|_|M51T1’,-- |_|MsnTé>

= o (M, T]) x -+ x (M, T))
= | [ My o(T] x - x T)
— |_|M5’ T”,
since My T" is a cofinal subset of My o(T] x---xT}). Thus o(ty,...,t,)=T" € 9!,

as required. 0O
Considering our example language again, we have, e.g., that
(while E do t od; (skip; while E dot od))={ W"(E,t); (skip; W"(E,t)) [ n € w}

is an element of ®.
Next, we consider the generalization of least fixed point models from terms to
contexts, or, more precisely, to derived operators.
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Definition 3.2.8 A family of contextual least fixed point constraints A is an S-
indexed family of sets such that for all s € S, Ay consists of a set of triples

{{(v1,...,00),¢,C"),

where the v; € Vi are distinct context variables, ¢ € T'({vi,...,v.})s, and
C" C OT({wvi,...,vn})s is a directed set. We write ¢=,,,. ,,UC" instead of
((v1,...,0,),¢,C") for elements of A,. Sometimes we write c=[]C" instead of

C=y,,..0,LUC", when the variables are clear from the context.

Definition 3.2.9 Let A be a family of contextual least fixed point constraints and A
be a complete ordered algebra. Then A is a A-contextually least fized point model (or
A satisfies A) iff for all c=,, ., IC' € A, where v; € Vi, 1 <0 <, calvi, ..., vn]

.....

is the lub of { c4[v1,...,vp] | ¢ € C"}in [Ag x -+ X Ay — Ayl

Note that { /4[v1,...,v,] | ¢ € C"} is a directed set, by lemma 2.3.23.
A suitable family of contextual least fixed point constraints A for our example
imperative language is

{ while E dov od=||[{ W"(E,v) | n€w} | E € Ep},

where v € V' is an arbitrary context variable, and W"(E,v) is the w-chain in OT'({v})
defined by

WO(E,v) = Q,
W™ E,v) = if E thenv; W"(E,v) else skip fi.

Let A be a complete ordered algebra, and define an w-chain w™(E, a) in A, for E € Ezp
and a € A, by

w’(E,a) = 1,
w"tH(E,a) = if E thena;w"(E,a) else skip fi,

so that w™(E,a) = W™(E,v) 4(a), for all n € w. Thus for all £ € Fzp,

while E dovoda= | | W"(E,v)a

ncw

iff while Edoaod = | | W"(E,v)(a), foralla € A

ncw

iff while Edoaod = | | w"(E,a), for alla € A,

ncw
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showing that A is a A-contextually least fixed point model iff for all F € Ezp and
a € A, while E do a od is the lub of the w-chain w"(E, a). In contrast, A satisfies the
family of least fixed point constraints ® of our example language iff while E do a od
is the lub of w™(E, a), for all denotable a € A and E € Exp.

Next, we consider the natural family of least fixed point constraints generated by
a family of contextual least fixed point constraints.

Definition 3.2.10 If A is a family of contextual least fixed point constraints then
A*, the family of least fized point constraints generated by A, is defined by: A% is the
set of all

ety ..t )=ty .. ) | e C'}
such that c=,, ,, UC" € Ay, v; € Vg, 1<i<mn,and {; €Ty, 1 <i<n.

Lemma 2.3.23 shows that A* is well-defined. It is easy to see that the families ®
of least fixed point constraints and A of contextual least fixed point constraints that
we have defined for our example language are related by ® = A*.

Lemma 3.2.11 If A is a family of contextual least fized point constraints and A is a
complete ordered algebra that satisfies A then A also satisfies the family of least fized
point constraints A*.

Proof. Let c=,,, ,,UC" € Ay, s € 5, where v; € Vg, 1 <i < n,and t; € Ty,
1 <1 < n. We must show that

Mc(ty, ... ta) = | | M{(t1,...,t,) | € C"},

i.e.,
C<.Z\4sl1 tl, ey Ms;’ tn) = |_| C,<_Z\4sl1 tl, ey MS% tn>,
et
and this follows from the assumption that A satisfies A. O

On the other hand, A may satisfy A* yet fail to satisfy A. We omit the proof,
which is similar to that of lemma 3.1.4. In chapter 5 we will see that if A is inductively
reachable and satisfies A* then it also satisfies A.

This section concludes with the definition of when an ()-least substitutive pre-
ordering over 7 satisfies a family of least fixed point constraints. We will use this
definition in chapter 5 when we give conditions for the existence of fully abstract,
least fixed point models.
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Definition 3.2.12 Let ® be a family of least fixed point constraints and < be an
()-least substitutive pre-ordering over 7. Then =< satisfies ® iff for all t=[|1" € &,
s€ S, tisalubof T"in (T}, <,).

Note that if 77 C OT, is a directed set and < is an €)-least substitutive pre-
ordering over 7 then T" is a directed set in (T}, <,), since OT, = (T}, <%) and
<% C <. The following lemma shows that an Q-least substitutive pre-ordering may
satisfy a family of least fixed point constraints without satisfying its closure.

Lemma 3.2.13 There is a signature X3, an Q-least substitutive pre-ordering < over
T, and a family of least fized point constraints ® such that < satisfies ® but does not
satisfy ®.

Proof. Let ¥ over S = {x} have the following operators:

(i) Q4 and z of type x; and

(ii) f of type x — *.
Since there is only one sort, we drop the sort subscripts from relations, etc., below.
Define < over T by

and let =] {2, fQ, f(fQ),...} be the only element of ®. Clearly < satisfies . On
the other hand, (fz)=U{fQ, f(fQ),...} is an element of ®, but (f z) is not a lub

of {fQf(fQ),...}in=. O
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Chapter 4

Example Correct Models

In this chapter, we study two programming languages within our framework. The
first is PCF, and the second is TIE, an imperative language with explicit storage
allocation and higher and recursive types. We give denotational semantics for both
of these languages, define notions of program ordering and equivalence from these
models in a uniform manner, and show that the models are inequationally correct
with reference to these notions of program ordering. In contrast, the model of PCF
is already known not to be fully abstract and we conjecture that neither is our model
of the second language.

A comprehensive treatment of these languages would include the characterization
of their notions of program ordering and equivalence in terms of operational semantics.
This was done for PCF in [Plol] and [BerCurLév], and appears to be feasible for our
second language.

4.1 Defining Notions of Program Ordering

We begin by describing the technique for defining notions of program ordering and
equivalence, as abstractions of models, that we use in sections 4.3 and 4.4, and that
forms the basis for our positive results of chapter 7. Given a complete ordered algebra
A, an (-least substitutive pre-ordering over 7T is defined as follows. First, a set of
program sorts P C S is selected, and the terms of sort p € P are designated as
programs. Next, a notion of program behaviour is defined by giving a continuous
function h: A|P — B, for a P-indexed family of cpo’s B of program behaviours, and
defining the behaviour of a program t of sort p to be h,(M,t). Finally, one term is
defined to be less than another iff the behaviour of the first is less than that of the
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second, in all program contexts. We then take the congruence over 7 that is induced
by this substitutive pre-ordering as our notion of program equivalence, so that two
terms are equivalent iff they have the same behaviour in all program contexts.

The following lemma formalizes this technique, using the contextualization oper-
ation R¢ of definition 2.2.24.

Lemma 4.1.1 Suppose A is a complete ordered algebra and h: A|P — B is a contin-
uous function, for P C S and B a P-indexed family of cpo’s. Define a pre-ordering
< over A|P by

ay <p ap iff hyay B, hy ay,

and a pre-ordering < over T|P by
ty =y ty iff Myty <, M, t,.

Then <€ is an Q-least substitutive pre-ordering over T, < is a unary-substitutive
inductive pre-ordering over A, and

ty X5 b off Moty <§ M ty,
for all ty,ty € Ty, s € S. Furthermore, A is <°-inequationally correct.

Proof. Everything except the final claim follows from lemma 2.3.36, since < = <,
is inductive. For the inequational correctness of A, simply note that if M ¢, T, M, t,
then Mt; <¢ Mty (as <¢is inductive), and thus ¢; <¢t,. O

The unary-substitutive inductive pre-ordering <¢ can be seen as the semantic
analogue of <¢ and its existence forms the basis for the positive results of chapter 7.
Note that if ~ is the equivalence relation over T'|P that is induced by < then ~¢ is
the congruence over T induced by <€ and thus A is also ~¢-correct.

4.2 A Metalanguage for Denotational Semantics

In sections 4.3 and 4.4, we make use of a mostly standard metalanguage for defin-
ing cpo’s and their elements that is taken from [Plo3|, with minor variations. The
following brief description is mainly intended to fix notation.

If P, and P, are cpo’s then P, — P, is the cpo of continuous functions from P;
to P, (i.e., [P1 = P,]). If x is a variable of type P; and E is an expression of type
P, then Ax: P,. E is the usual lambda abstraction of type P, — P,. If E; has type
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P, — P, and E, has type P; then E; FE, is the application of E; to Ey of type Ps.
Function space formation associates to the right and function application associates
to the left.

If P,...,P,, n>0, are cpo’s then P; X --- x P, is their product (see definition
2.3.5) and P, + - - - + P, is their separated sum (the least elements are not identified).
We use tupling notation (Fi,..., E,) and the projection functions 7; to construct
and select, respectively, elements of P, x --- x P,. In addition, for an expression £
of type P; x --- x P,, we write

letx,:Py,...,x,: P, be Ein E'
as an abbreviation for
(Az1: P+ Ay Py BN (m E) -+ - (mp, E).

As usual, in;: P, — Py +---+ P, is the ¢'th (nonstrict) injection function, and if
fi: P, — P', 1 < i < n, are continuous functions then [fi,..., fu]:PL+---+ P, = P’
is the strict continuous function such that [f1,..., fu|(in;p) = fip, forall 1 <i <n
and p € P,. For an expression E of type P, + - --+ P, and expressions E; of type P,
1 <1< n,

case Einxy: Py EY, ... xy: Py. E

is an abbreviation for
[(Azy: Py. Ei, ce AL, P, E;L] E.

We also consider the product [[,cx P, of arbitrary X-indexed families of cpo’s P,
which consists of the product of the underlying sets, ordered componentwise. Such
products are manipulated using the projection (p[x]) and updating (p[p/z]) operations
that were defined in section 2.1.

For a set S, S, is the flat cpo S U {L}, for some L ¢ S. For an operation
f:S1x---x S, = 5" over sets, we also write f for the unique extension of f to
Sip X -+ x S, — S that is strict in each argument, individually. In particular,
we make use of the bistrict extensions of addition, +: N x N — N, and the equality
operation over the natural numbers, =: N x N — Tr. Define a predecessor function
pred: N, — N, by
r—1 ifze(N-{0}),

dr =
prea {J_ ifz=_Lorz=0.

We can use the theory developed in [SmyPlo] (and also [Plo3]) in order to solve
recursive domain equations involving —, X, + and II, up to order-isomorphism.
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For any cpo P,
if —then—else—: Try x P x P — P

is the usual conditional function (strict in its first argument), and for cpo’s P, and
P27
ifdef —then—: Py X Py — P

is defined by
L if P1 = J_,

ifdef py then py = )
po  otherwise.

Finally, px: P. E is an abbreviation for (fiz Az: P. E), where fiz: (P — P) — P is
the usual least fixed point operation, and let z: P be Ein E' is an abbreviation for
(Az: P.E") E).

4.3 The Programming Language PCF

In this section, we study the programming language PCF within our framework. Two
major variants of PCF are considered in the literature: the first is based upon the
typed lambda calculus, and studied in [Plol] and [BerCurLév], and the second is based
upon typed combinatory logic, and studied in [Mil2] and [Mul]. The combinatory form
lacks the intuitive appeal of the lambda calculus version, but is technically easier to
work with, since it avoids the complexities of bound variables. Because our theory
gives no formal status to bound variables and their scopes, it is more effective for
us to work with the combinatory form of PCF. An indication of how we could have
treated the lambda calculus version—with less success—can be found in the following
section, which considers an imperative language that is based upon the typed lambda
calculus.

We begin by defining the syntax of PCF, i.e., its signature. The sorts of this
signature consist of PCFEF’s types.

Definition 4.3.1 The set of sorts S is least such that:
(i) nat € S,
(ii) bool € S, and
(iii) sy > s € Sif s; € S and s, € S.
The set of program sorts P C S is {nat, bool}. We let the sort constructor — associate
to the right.
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Note that every sort is of the form s; —---— s, —p, forn >0,s, € 5,1 <i<n,
and p € P.

Definition 4.3.2 The signature > over S has the following operators:
() Qy of type s,
81 s, Of type (s1 — s9) X 51— 59,
K, 5, of type (s1 — s2 = 51),
Ss1,50,55 Of type ((s1 = s2 — s3) = (51 = $2) = 51— s3),
Y; of type ((s = s) — s),
tt and ff of type bool,
n of type nat, for n € w,
succ and pred of type (nat — nat),
(ix) zero? of type (nat — bool),
(x) if 4 Of type (bool — nat — nat — nat), and
(x1) if ooy Of type (bool — bool — bool — bool),
for all s,s; € S, where the compound sorts are parenthesized in order to avoid confu-
sion. Thus - is a binary operator, and all of the other operators are nullary. We drop

—~
—
—

7R =
< B

(v
(vi
(vii

(viii

a3

the sort suffixes from the operators when they are clear from the context, and let -
associate to the left.

Definition 4.3.3 Let I be an S-indexed family of disjoint countably-infinite sets of
identifiers. We confuse the family I with the set of all identifiers ,cq ;. For an
identifier x € I, we write sort(x) for the unique s € S such that x € I.

Form a signature X% by adding nullary operators x of type s, for all x € I, s € S,
to X. The set of identifiers that occur in an term t of T+ is denoted by ID(t). We
write 7+ and T for Tyx+ and Ty+, respectively.

Note that for all t € TF, ID(t) = 0 iff t € Ts.

Definition 4.3.4 For x € I,, and t € T}, the abstraction operation [x]t € T},  is
defined by structural recursion:

(1) [l‘]l‘ = Ss,s%s,s ) Ks,s%s : Ks,s: for x € Is;

(ii) [2]t = Ky, 5, - £, if 2 ¢ ID(t), for x € I, , and t € T}}; and

(111) [l‘](tl . tz) = 551,53,52 . [l‘]tl . [.T]tg, lfl‘ € ID(tl . tg), fOI" xr € Isl, tl € T53%Sz and
ty € T;g

In the literature [z]t is sometimes written A\*z. ¢, or even Az.t. The reader should
remember that identifier abstraction is not a formal part of our language, and cannot
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be treated as a derived operator. In fact, ¢ is not a subterm of [z|t, whenever = €
ID(t). It is easy to see that ID([z]t) = ID(t) — {«}, for all terms ¢ of T'F.
Next, we present the natural continuous function model € of PCF.

Definition 4.3.5 Let £ be the complete ordered algebra whose carrier is defined by

Enat - NJ_J
Eyoor = Try,
E.Sl%sz - E81 — E527

and whose operations are defined by

Qs — J-ES
€1 *s1,s2 €2 = €1 €2
K 5o = Ae1: Eg . Aegt B, €4
551,52753 = )\613 E51%52%53- )\623 ESl%Sz' )\633 ESI. €1 €3 (62 63)

Y, = Xe: E, . pe’: Es.ee

tt=tt
=1
n=mn

succ = An: N .n+1

pred = pred

zero? = An: N, .n=0

if pat = Ab: Tr . Ang: N Ang: N . if bthen ny else ng
W boot = Ab: Tr Aby: T Abo: Ty . if b then by else bs.

Definition 4.3.6 An algebra A is combinatorial (or is a combinatory algebra) iff
(i) K, 5, - a1+ a2 = ay, for all a; € A,, and ay € Ag,; and
(i1) Ss,,50.55 - @1 - Q2 - a3 = a1 - a3 - (az - a3), for all a; € Ay 5,5y, a2 € Ay s, and
as € A, .

Definition 4.3.7 An algebra A is extensional iff for all a;,ay € A; s, if a1 - d' =
ay - a, for all @’ € Ay, then a; = ay. An ordered algebra A is order-extensional iff
for all ay, a9 € As, sy, if a1 - a' Cy, ay - d, for all ' € Ay, then a1 Ty, 5, as.

Clearly, any order-extensional ordered algebra is also extensional.
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Definition 4.3.8 An ordered algebra A is standard iff
(1) Qpoora, tta and ff 4 are distinct and form all of Ay, and ay; Tpe ag iff
ay = Qpoor OT @y = ay;
(i) Qpara and ny, n € w, are distinct and form all of A4, and a; T,y ag iff
a1 = Qg O a1 = ao; and
(iii) for all n € w, the following equations (equalities between derived operations
of A) hold:

suce - Qpat = Qnar
succ-n =n+1
pred - Qpop = Qpag
pred - (n+1) =n
pred -0 = Qpu
zero? + Qpat = Qpoor
zero? -0 = tt
zero? - (n+1) =
8 nat * Lboot * V1 - V2 = Qpgy
if pat "t v1 v = 1
W par * Jf - 01+ v2 = 02
if boot * bool * V1 * Uy = Qpool
if boot * £+ V) vy = vy
if poot * ff - V1 -V = 5.
Note that n is not a context variable in the above equations. It is easy to see that
€ is a standard, order-extensional, combinatory algebra.

Next, we develop tools for evaluating terms that are constructed by the identifier
abstraction operation.

Definition 4.3.9 Given a Y-algebra A, define a Y '-algebra A*, as follows. Its
carrier is defined by
A: = FEnvy — AS,

where the set Env 4 of environments is [1,c; Asori(z)- For all nullary operations o € X,
define

op=o,
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for all p € Env 4. For identifiers © € I, s € S, define

z p = plz],

for all p € Envy. For a, € Af az € A7 and p € Env,, define

§1—>82)
(a1 - az)p = (a1 p) - (a2 p).
We write Mt for M4+: T+t — AT,

Lemma 4.3.10 Let A be an algebra.

(i) For allt € Ts and p € Enva, Myt = M}t p.

(i) For all t € T;F and p1,ps € Enva, if pi[z] = peo[z], for all x € ID(t), then
M tp = Mftp,.

Proof. Both parts are standard structural inductions. O

Lemma 4.3.11 Let A be a combinatory algebra. For all v € I,,, t € T

or P € Enuy
and a € A,,,

(M

S1—>S2

[z]t p) - a = Mt pla/x].
Proof. A standard structural induction, using lemma 4.3.10 (ii). O

Now, we define a family of contextual least fixed point constraints A for PCF,
and prove that a complete ordered algebra satisfies A iff the constant Y is the usual
least fixed point operation. An immediate consequence is that £ is a A-contextually
least fixed point model.

Definition 4.3.12 The family of contextual least fixed point constraints A is defined
by
Ay ={Y -v)=l{Y" | n€w}}

for some v € V;_,,, where the w-chain Y in OT ({v})s is defined by

V' =Q,
Yyt =gy,
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Lemma 4.3.13 A complete ordered algebra A is a A-contextually least fixed point
model iff for all a € A,_,s,
Yeoa=|]a" (1),

new
where the w-chain a™(L) in Ay is defined by
a®(L) =1,
a" L) = a-a"(L).

Proof. A simple induction on n shows that for all n € w, Y"(a) = a™(L), for all
a € As_,,. Thus,

Y v)a=|]Y "4 if (Y-a)=|]Y™a), foralla € Ay,

necw new

iff (Y-a)=[]da"(L), foralla e A,

new

as required. 0O

Note that £ also satisfies the family of least fixed point constraints A*, by lemma
3.2.11.

Next, we define notions of program ordering and equivalence for PCF. We take
the terms of program sort as programs, E|P as the cpo of program behaviours, and
define the behaviour of a program to be its meaning.

Definition 4.3.14 Define a pre-ordering < over E|P by
er <pexiffe; ) e,
and a pre-ordering < over T'|P by
t 2p e iff Mty <, M, t,.
Let ~ be the equivalence relation over T'|P that is induced by <.

By lemma 4.1.1, <¢ is an (2-least substitutive pre-ordering over 7, <¢is a unary-
substitutive inductive pre-ordering over &,

ty <5t iff Moty <§ Mo,

for all t,,t, € T, s € S, and £ is <X%inequationally correct. Furthermore, ~° is the
congruence over 7 induced by <¢ and &£ is ~°-correct.

We now recall Plotkin’s theorem that £ is not ~¢-fully abstract, and thus is not
=<‘-inequationally fully abstract, since the “parallel or” (por) function is not definable
in PCF.
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Definition 4.3.15 Let bbb be the sort bool — bool — bool. Define terms portest, €
Typb—snat, for i = 1,2, by

portest, = [x](if ,z - (T - tt - Qpoor)
*(if nat + (@ + Qyoor -+ 1)
(o - (@ S 1)
' Qnat
. Qnat)
. Qnat)-

Let por € Ey be unique such that portt L = tt, por L tt = tt and por ff ff = ff.

It easy to see that for all i € {1,2} and e € Eppp, (Mppp—snat portest;) - e is equal
to ¢ iff e = por, and is equal to L iff e # por.

Lemma 4.3.16 (i) <¢|P = <¢|P
(i) ~g|P = =°|P

Proof. (i) Since <g C <€, it is sufficient to show that =5 C Zgp, forallp € P. If
t1 25 to then ¢, <, t9, because of the existence of projection derived operators v[v] of
type p — p, and thus M, t; &, M, ty, i.e., t; Zg, to.

(ii) IInmediate from (i). O

Theorem 4.3.17 (i) For all ty,ty € Ty, if ty -t XE to -1, for allt' € Ty, then
t; X¢ to.

§1—>82

(ii) For all t\,ty € Ty sy, if t1 -t =5, to - 1!, for all t' € Ty, then t, = ts.

C
§1—>S2

Proof. (i) follows from the adaptation of theorem 3.5.9 of [Berl] (proposition 4.1.3
of [Ber2]) to our version of PCF, and (ii) follows immediately from (i). O

Lemma 4.3.18 por is not denotable.

Proof. Follows from the adaptation of the stability theorem (2.8.8) of [Berl]
(theorem 3.6.5 of [BerCurLév]) to our version of PCF. O

From lemma 4.3.18 and the fact that FEy, is finite, and thus has no nontrivial
directed subsets, we can conclude that £ is not inductively reachable.

Lemma 4.3.19 portest; =5, . POTEESLS
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Proof. By lemma 4.3.18, por is not denotable, and thus
Meg oy (portest, - t) = L = Mg (portest, - 1),
for all t € Tyy,. Then, by lemma 4.3.16,
portest, -t = , portesty - t,
for all ¢t € Ty, and the result follows by theorem 4.3.17. O
Theorem 4.3.20 &£ is not =°-fully abstract.

Proof. The terms portest, and portest, are distinguished by ~¢, since they yield
different values when applied to por, but are identified by ~¢, by lemma 4.3.19. O

4.4 TIE: A Typed Imperative Programming Lan-
guage

In this section, we study a programming language called TIE, for Typed Imperative
Expressions. TIE is strongly typed, expression-oriented and imperative: every term
in the language is an expression of a fixed type, (potentially) yielding a value of that
type, but expressions can have side effects, and thus are evaluated in a fixed order.
The language has higher and recursive types, as well as reference types and explicit
storage allocation. Procedures, i.e., values of higher type, can be returned as the
results of other procedures, as well as stored in storage locations of appropriate type.
Thus an implementation of TIE cannot follow a simple stack discipline, in the sense of
[HalMeyTral, but must retain scopes in a heap. With the exception of not including
nondeterminism, our language is thus a good deal more general and uniform than the
typed imperative language of [HalMeyTra].

We begin by defining TIE’s syntax, i.e., its signature. The sorts of this signature
consist of TIE’s types.

Definition 4.4.1 Let SVar be a countably infinite set of sort variables. The set
SEzp of sort expressions is least such that:
(i) 1 € SEzp,
(ii) v € SEzp if v € SVar,
(iii) ref s € SExp if s € SExp,
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(iv) s1 X sg,81 + S92, 51 — S9 € SEzp if 1,59 € SEzp, and

(v) pv.s € SExp if v € SVar and s € SExp.
Here p is a variable binding operator, and we have the usual notions of free and bound
occurrences of variables in expressions, as well as open and closed expressions. We
write [s1/v]sy for the substitution of s; for all of the free occurrences of v in s9, where
bound variables are renamed, as necessary, to avoid capturing. In the following, we
identify sort expressions up to the renaming of bound variables, in the usual way.

The set of sorts S consists of the closed sort expressions, and the set of program
sorts P C S consists of the sorts that do not involve the sort constructors ref and
—, l.e., the ones built up from 1, X, 4+ and recursion.

Definition 4.4.2 Let I be an S-indexed family of disjoint countably infinite sets of
identifiers. We confuse the family I with the set of all identifiers J,cq ;. For an
identifier x € I, we write sort(x) for the s € S such that x € I;.
Define a signature X over S with the following operators:
(i) Qs of type s,
(ii) = of type s, for z € I,
(iii)  of type 1,
(iv) news of type s — (ref s),
(v) :=; of type (ref s) x s — s,
(vi) conts of type (ref s) — s,
(vii) =, of type (ref s) x (ref s) = (14 1),
(viii) pair,, ,, of type s1 X s — (51 X 52),
(ix) first,, ,, of type (s1 X s2) — s1,
(x) second, s, of type (s1 X s2) — 2,
1)
1)
)

51,52

(xi) dnfirsty, ,, of type sy — (s1 + s2),
(xii) inseconds, s, of type sy — (51 + s2),
(xiii) case—first,—second,—esacs, of type (s1 + s3) X s3 X s3 — s3, for © € Iy,
and y € I,,
(xiv
(xv

) Azs, Of type so — (51 — s2), for x € I,
) -

(xvi) ing, s of type ([uv.s/v]s) — (pv.s), for pv.s € S,
)
)

51,52 of type (51 — 32) X §1 — S2,

(xvil) out,, s of type (uv.s) — ([uv. s/vls), for pv.s € S,

(xviii of type s1 X sy — s9, and

151,52
(xix) rec, of type s — s, for x € I,
for all s,s; € S, where compound sorts are parenthesized in order to avoid confusion.

Thus, e.g., first and A are unary operators, whereas pair and - are binary operators.
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We drop the sort subscripts from the operators when no confusion can occur, and let
- and ; associate to the left and right, respectively.
The operators case, A and rec bind identifiers:

case ty first, to second, t3 esac

binds z in ¢ and y in 3, and A, ¢ and rec, t bind x in . We have the usual notions
of bound and free occurrences of identifiers in terms, and of open and closed terms.
We write [t /x|ty for the substitution of ¢, for all of the free occurrences of x in t,,
where bound variables are renamed, when necessary, to avoid capturing.

The sort 1 is intended to contain a single element, x. Elements of reference sorts,
ref s, are pointers to storage locations, which are created (and initialized) by new,
modified by assignment (:=), and accessed by cont (contents). The product (x),
sum (+) and function (—) sorts have their usual meanings and associated operators,
where function application (-) is intended to be by-name, instead of by-value. The
sort bool =1+ 1 can be seen as the booleans; =; of type (ref s) x (ref s) — bool is a
test for equality between pointers to storage locations. Recursive sorts are defined via
w, and, e.g., nat = pv. (1 + v) is the natural numbers. The in and out operators are
used to package and unpackage elements of recursive sorts. The sequencing operator
(;) evaluates its first argument, discards its value (but not its side effects) and yields
the result of evaluating its second argument. Finally, the operator rec is used to give
recursive definitions in the usual way. For example, rec, x and €2 are intended to be
equivalent. With the exception of the the case, A and - operators, the arguments of
operators are evaluated from left to right. Only one of the second and third arguments
of the case operator is evaluated, depending upon the value of the first, and neither
the only argument of A nor the second argument of - is ever evaluated (the latter,
since application is by-name).

The usual operators over the derived sorts bool and nat can be defined as derived
operators in TIE. For example, infirst x and insecond x are the nullary derived oper-
ators of type bool that stand for true and false, respectively, and for any s € S, a
derived operator

if —then—else— fi[vy, v, vs3]

of type bool x s x s — s can be defined by
(Aw(Az(Ay casew first, x second, y esac))) - vy - v2 - U3,

for arbitrary identifiers w € Iy, x,y € I; and z € I;. The case expression must be
abstracted and then applied to the context variables in order to prevent the capture of
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any occurrences of the identifier z in the second and third arguments of the derived
conditional. The suitability of this definition is thus dependent upon application
being by-name instead of by-value.

Derived operators for strict (call-by-value) lambda abstraction and variable dec-
laration can be defined, as follows. For si,ss € S and x € I, let \.[v] of type
Sy — (81 — s2) be

Ay case (infirst x) first, v second,, §) esac,

for some y € I. For s1,5, € S and @ € Iy, let
letvar x be—in—ni[vy, vy
of type s1 X s9 — 59 be
(Mg v2) - (new vy).

It is essential that strict lambda abstraction be used when defining letvar.
Next, we define a model £ of TIE, beginning with its semantic domains.

Definition 4.4.3 The S-indexed family of cpo’s Val of values, together with the
S-indexed family of order-isomorphisms «, is the initial solution, in the sense of
[SmyPlo], of the infinite system of simultaneous isomorphism equations

ay: Valy = {x},,
Oref st Valpeps = N,
Vals, x Vals,,
Val,, + Vals,,
Comp, — Comp,,,

1%

asl ><S2: Valsl X822

1%

sy +sy° Val81+s2

12

a81—>52 . Val51—>82

12

Ay, s: Valul/. s Val[ul/. s/v]ss

for all s,s; € S, where Comp,, for computation, is

Sto — (Vals x Sto),

and Sto, for store, is
H[(NL — Vals) x N_|.

seS

Define the cpo Env of environments to be

H Compsort(:c) :

zel
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The names of storage locations are, simply, natural numbers. A store o € Sto consists,
for each s € S, of a pair (f,n), where f: N — Val, and n € N, . In the semantics
given below, we follow the convention that n is the least available location in f. We
write empty for the store with no locations allocated:

empty[s] = (L, 0), for all s € S.

Definition 4.4.4 The complete ordered algebra L is defined as follows. Its carrier
L is defined by

Ly = Env — Comp, = Env — Sto — (Vals x Sto),

for all s € S. Thus a term ¢t € T, when evaluated in an environment p € Env and
a store o € Sto, produces a value v € Val, and a new store ¢’ € Sto. Divergence
(nontermination) is indicated by ¢’ being L; the value v is only meaningful when

o' # 1.
The operations of £ are now defined below:
Qy=1p,,

x = \p: Env. plz]
(z € Iy),

*x = Ap: Env. Ao Sto. (ag ' %, 0),

newsl = Ap: Env. Ao Sto.
let v: Valg, o': Sto be (I po)

in ifdef o’
then let f: Ny — Vals,n: N, be o'[s]
i (Qrep ) T
o'[{A\n': N, . if n'=nthenv else (f n'),
n+1)/s]),

1 :=4 Iy = Ap: Env. \o: Sto.
let vi: Valyep s, 0': Sto be (1 po)
in let vo: Valg, 0": Sto be (ly po’)
in ifdef o"
then let f: Ny — Valg,n: N be o"|s]
in (vg,
o"[(An': N if n' = (apep s v1) then vy else (f n'),

n)/sl),
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contsl = Ap: Env. \o: Sto.
let v: Valyep s, 0": Sto be (L po)
inlet f: N, — Valg,n: N, beo'[s]
in ((f (arer s v)), 0'),

Iy =5 ls = A\p: Env. \o: Sto.
let vi: Valyes s, 0": Sto be (11 po)
in let vg: Val,ep s, 0": Sto be (1o po’)
in (i (6 (Qres v1) = (Qreg s v2)
then iny (cq %)
else iny(agt %)),
U”),

ly = Ap: Env. \o: Sto.
let vy: Vals,,0': Sto be (I po)
in let vy: Valg,, 0" Sto be (I po’)

in (o, (vi,v2),0"),

I pairy, .,

firstg, s, 1 = Ap: Env. Ao Sto.
let v: Valg, «s,,0': Sto be (I po)

in (1 (s, xs, V), 0'),

second, s, | = Ap: Env. Ao: Sto.
let v: Valg, «s,,0": Sto be (I po)

in (ma (s, xs, V), 0"),

infirst [ = Ap: Env. \o: Sto.

let v: Vals,, 0': Sto be (L po)

in (o, (in1v),0"),

51,52

inseconds, 5, | = Ap: Env. Ao: Sto.
let v: Vals,, o' Sto be (I po)

in (o, (ingv), o',

case ly first, ly second, l3 esacy, = A\p: Env. Ao: Sto.
let v: Valg, 1s,,0": Sto be (Iy po)
in case (O, 15, V)
invy: Vals,. (I p[Ao: Sto. (vy,0)/x]0'),
vy: Vals,. (I3 p[Ao: Sto. (vy, o) Jy] o)
(x € I,y € I,),
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Azsy L = Ap: Env. Ao Sto.
(0,5, (Ar: Comp,, . (L plr/x])),
o)
(x € Iy)),

1 +5,,60 lo = Ap: Env. Ao Sto.
let v: Valg, _y5,,0": Sto be (I po)

n (aslﬁsz v (lZ p) UI)’

M. s | = Ap: Env. Ao Sto.
let v: Valyy, s s, 0': Sto be (Lpo)

in {a;!

uu.sv7al>7

out . s | = Ap: Env. Ao Sto.
letv: Val,,. 5, 0" Stobe (I po)
in (. s v, 0",

ly = Ap: Env. \o: Sto.
let v: Valg,, 0': Sto be (I, po)
in(lapo’),

h 151,52

recy | = pl': Ls. A\p: Env. (I p[(I' p)/z])
(x € Iy).

As is usual for models of languages with block structure, terms are assigned mean-

ings in £ with the help of environments. It is important to remember that complete
ordered algebras, in general, will not have environments as part of their formal struc-
ture. This is a significant limitation of our theory.

Note that for all x € I, s € S, the elements ()5 and rec, x of Ly are equal.

The obvious principle of extensionality under application is not valid in L, as the

following example shows. Let € I, s € S, and consider the elements A, ; 2, and
Qs of L. They are unequal, since for any p € Env and o € Sto, mo((A\; Q) po) =
0. One the other hand, for any [ € L,, p € Env and o € Sto,

(A Q) 1) po = asmss(a, 55 (Ar: Comp,. Qpli/])) (1p) 0

= Qp[(Lp)/z]o
=1

= a5 L(lp)L
= (Q2-1)po,
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and thus, for all [ € Ly, (A, ) -1 = Q- [, by extensionality in the metalanguage. I
view the lack of extensionality as an expected property of models of TIE, rather than
as a defect of L.

Since application is by-name instead of by-value, we can give an equivalent defi-
nition of the operation rec that does not explicitly mention environments.

Lemma 4.4.5 An equivalent definition of the operation rec is

recy = pl': Lg. (Ags 1) 5,5 '
(z € ).

Proof. For [,l' € Ly, p € Env and o € Sto,

(AD) 1) po = s (ot Ak Comp,. (Lplr/])) (I p) o
= 1p[(l"p)/z] 0.
Thus for all [,I' € L,,
(A D) - 1" = Xp: Env. (A1) - 1) p
= Ap: B (Lp[(I' p) /),

by extensionality and n-conversion. O

The previous lemma motivates the following definition of a family of contextual
least fixed point constraints for TIE.

Definition 4.4.6 The family of contextual least fixed point constraints A is defined
by
Ay = {(rec,v)=U{rec” |new} |z el},

for some v € Vj, where the w-chain rec? in OT({v}), is defined by

0 _
rec, = 2,

rec”™ = (A, v) - rec”.

The next lemma shows that a complete ordered algebra is a A-contextually least
fixed point model iff rec is the expected least fixed point operation. An immediate
consequence is that £ is a A-contextually least fixed point model.
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Lemma 4.4.7 A complete ordered algebra A is a A-contextually least fized point
model iff for all x € I, s € S,

reca = | | r(a), for alla € A,

new

where the w-chain v (a) in Ay is defined by:

ro(a) = L,

ryti(a) = (Ao a) - 13(a).

Proof. A simple induction over n shows that for all n € w, rec”(a) = r?(a), for all
a € A;. Thus,

(recyv)a = | | reck , iff (recya) = | | recl(a), for all a € A,

ncw ncw

iff (rec,a) = || ri(a), for alla € A,

new

as required. 0O

Now, we define notions of program ordering and equivalence for TIE. It is natural
to take the closed terms of program sort as programs, Val|P as the cpo of program
behaviours, and to define the behaviour of a program to be the result of evaluating it
in the undefined environment and empty store.

Definition 4.4.8 The continuous function h: L|P — Val|P is defined by:
hyl = let v: Val,, o: Sto be (I L empty) in ifdef o then v.

The behaviour of a program ¢ € T}, is then h,(M,t). Define a relation <° over T" by:
t; <Y ¢, iff for all derived operators c[v] of type s — p, p € P, such that both c(t,)
and c(ty) are closed,

(M c(t1)) Evar, hp(My c{t2)).

Let &0 = <00 >0,
It is easy to see that the terms x and if true then x else x fi of sort 1 are assigned
equal meanings by £, and thus are equivalent under ~°. This shows that programs

can be equivalent to nonprograms, or, in other words, that the property of being a
program is not preserved by ~°, but must be explicitly verified to hold after applying
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~0 transformations to a program. This situation is normal for languages with block
structure.

Although <° and ~° are obviously reflexive and substitutive, their transitivity is
not immediately clear, since if ¢; <% t5 <% #3 and ¢(t;) and ¢(t3) are closed, it does
not follow that c(ts) is also closed, as can be seen from the example of the previous
paragraph. Furthermore, lemma 4.1.1, and thus much of the theory developed in
chapters 5 and 7, does not directly apply to <% and ~°, since this lemma makes no
mention of identifiers and their scopes. Fortunately, we can give alternative definitions
of these relations via lemma 4.1.1, thus showing their transitivity in the process. We
proceed as follows. Take the set of all terms of program sort as programs, Val|P
(again) as the cpo of program behaviours, and define the behaviour of a program
t € T, to be h,(M,t), for the function h defined above.

Definition 4.4.9 Define a pre-ordering < over L|P by
Iy <p lp it hyly Evg, hyly,
and a pre-ordering < over T'|P by
th 2t it Mty <, My ts.
Let ~ be the equivalence relation over T'|P that is induced by <.

Then, by lemma 4.1.1, <X¢ is an (2-least substitutive pre-ordering over 7, <¢is a
unary-substitutive inductive pre-ordering over L,

ty X5t iff Mty <§ Mo,

for all t,t, € Ty, s € S, and L is <°inequationally correct. Furthermore, ~¢ is the
congruence over 7 that is induced by <¢ and L is &“-correct.

Lemma 4.4.10 For every finite set of identifiers X C I and sort s € S, there is a
derived operator ¢ [v] of type s — s such that for all t € Ty, none of the identifiers in
X are free in ¢ (t), all of the free identifiers (if any) of ¢X(t) are also free in t, and

M,c*(t) L= Mt L.

Proof. By induction on the size of X. For the case |X| = 0, simply let ¢*[v] = v.
For the induction step, suppose X =Y U {z}, for z € Iy, and let ¢*[v] be

()\z,s CY) ‘sl Qs’-
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Let t € T. Clearly ¢* has the desired identifier closure properties, and for all o € Sto,

MycX{t)y Lo = (A, (Myc*(t))-1) Lo
= ags(azt, Ak Compy. My ¥ (t) L[k/z])) Lo
= M,c"(t) L[L/z]o
= M,c"(t) Lo
=Mt 1lo.

The lemma then follows by extensionality. O
Lemma 4.4.11 <% = <¢ gnd =" = =¢

Proof. The latter equality will follow from the former, and clearly <¢ C <% For
the opposite inclusion, suppose that ¢; <Y ¢,, and let c[v] be a derived operator of
type s = p, p € P. By lemma 4.4.10, there is a derived operator ¢'[v'] of type p — p
such that both ¢(c(t1)) and ¢/{(c(t2)) are closed, and

M, {c(t;)) L= M,c(t;) L,
for i = 1,2. Thus ¢/(c)[v] is a derived operator of type s — p, and
hp(My c(t1)) = hy(M, (c(e))(t1) © hyp(M, () (t2)) = hyp(M, c(t2)),
by the assumption that t; <% ¢,. O

I conjecture that £ is not ~°fully abstract (and thus not <°inequationally fully
abstract) since
My (newx); % # My *,

but it appears that
(new %); x &5 *.

In the remainder of this section, we investigate a call-by-value version of TIE.
First, the isomorphism equations for — that are used in the definition of Val should
be changed to

~

Qg syt Valg, g, = Valg, — Comp,,,

for all s1,s9 € S. Second, the definitions of the operations A and - should be changed
to
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Azsy L = Ap: Env. Ao Sto.
(o L, (W Valy, . (1 p[Ao: Sto. (v, o) /x])),
o)

(x € Iy)),
and

1 +51,50 lo = Ap: Env. Ao Sto.
let vi: Vals, s,,0": Sto be (I, po)
in let vy: Valg,, 0": Sto be (I po’)
in (s s, U1 V2 0").

Now both arguments of - are evaluated, the first followed by the second.

Unfortunately, the change from call-by-name to call-by-value has at least three
unpleasant consequences. The first is that the derived conditional operator (given
immediately after the definition of TIE’s signature) is no longer suitable, and I con-
jecture that no replacement exists.

The second is that we lose lemma 4.4.5, and thus the family of contextual least
fixed point constraints A is not appropriate for the changed language; again, there
does not appear to be a suitable replacement. As a partial solution to this problem,
we might consider making do with a family of (ordinary) least fixed point constraints.
Unfortunately, we run into problems again, since the following “definition” of a family
of least fixed point constraints ® is invalid:

O, = {recyt={|{rec"t |ncw}|zel,teT,},
where rec] t is defined by

0y _
rec, t = €1,

rec" ™t = [rec™ t/x]t.

Due to the renaming of identifiers that is involved in substitution, recl ¢ is not always
an w-chain in OT.

The third problem is that we loose the proofs of lemmas 4.4.10 and 4.4.11, and
the relations ~° and ~¢ (and thus <° and <¢) appear, in fact, to be unequal. More
seriously, it is unclear whether <% and ~° are even transitive. Consider the terms %
and x;x of sort 1, for v € I, ,. It is easy to see that they are distinguished by ~{,
since

hi(My (x;%)) = L # (ag ' %) = hy(My %).
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On the other hand, I see no way of causing x; % to diverge in a closed context, without
also causing * to diverge in that context, and thus it seems that they are equivalent
under ~%. Here, it is essential that the sort uv.v is uninhabited, i.e., that there does
not exist a closed, convergent, term ¢ of sort uv. v, since if such a ¢ did exist then our
pair of terms would be distinguished by the context c[v] = rec, (v;t). Perhaps an ad
hoc solution to this problem can be found by disallowing uninhabited types.

I hope that some of these problems can be solved by giving identifiers and their
scopes formal significance in signatures, and working with models that have environ-
ments as part of their formal structure. In such a theory, terms would be identified
up to the renaming of bound variables, solving the problem with ®. Perhaps the
problem of defining derived operators can be solved by working with two kinds of
derived operators: ones that can capture free identifiers and ones that cannot. The
other problems seem more difficult, and may require more changes, but I hope that
this proposal is a step in the right direction.
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Chapter 5

Conditions for the Existence of
Fully Abstract Models

In this chapter, we give necessary and sufficient conditions for the existence of correct
and fully abstract, least fixed point, complete ordered algebras. As usual, we consider
the three kinds of correctness and full abstraction, equational (ordinary), inequational
and contextual, and the two kinds of least fixed point models, ordinary and contextual.
The condition for the existence of inequationally fully abstract, (ordinarily) least fixed
point, complete ordered algebras is the cornerstone of these results: it is developed
first, using a general term model construction, and the other conditions are derived
from it. The condition for the existence of equationally fully abstract, least fixed point
models will be employed in chapter 6 to show that such models do not exist for two
natural nondeterministic programming languages. The condition for the existence of
inequationally fully abstract, least fixed point models will be used in chapter 7 to
develop a useful model-theoretic condition, which is used to show the existence of
inequationally fully abstract models for the languages introduced in chapter 4.

We also prove theorems concerning the existence of initial objects and the nonex-
istence of terminal objects in various categories of correct and fully abstract, least
fixed point, complete ordered algebras, and show the existence of nonisomorphic in-
ductively reachable, inequationally fully abstract, least fixed point, complete ordered
algebras.

As an aid to understanding and appreciating these results, we begin by considering
the simpler case of inequationally correct and fully abstract ordered algebras. In the
following, let < be an (2-least substitutive pre-ordering over 7. Clearly OT is initial
in the category of <-inequationally correct ordered algebras, together with monotonic
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homomorphisms, and, by theorem 2.4.15, OT /< is initial in the full subcategory of
=-inequationally fully abstract ordered algebras. By corollary 2.4.18, every reachable
ordered algebra A is order-isomorphic to OT /< 4. Thus OT /=< is the unique (up to
order-isomorphism) reachable, <-inequationally fully abstract, ordered algebra and,
again by theorem 2.4.15, it is terminal in the category of reachable, <-inequationally
correct, ordered algebras, together with monotonic morphisms.

As we will see in the following sections, the situation is considerably more compli-
cated for least fixed point, complete ordered algebras and continuous homomorphisms.

5.1 Inequational Full Abstraction

In this section, we give a necessary and sufficient condition for the existence of <-
inequationally fully abstract, ®-least fixed point, complete ordered algebras, and
show that if the category of such ordered algebras and continuous homomorphisms is
nonempty that it has an initial object.

Theorem 5.1.4 is the main result: a <-inequationally fully abstract, ®-least fixed
point, complete ordered algebra exists iff < satisfies ®. The “only if” direction of this
theorem is straightforward. For the “if” direction, we construct a <-inequationally
fully abstract, ®-least fixed point, complete ordered algebra Z(=<,®) via the quoti-
enting and completion constructions of section 2.4. The ordered algebra OT /< is
<-inequationally fully abstract and satisfies the constraints of ® but is not, in gen-
eral, complete, and thus we must embed it into a complete ordered algebra in such
a way that at least the lub’s corresponding to the constraints of ® are preserved. It
is not always possible to preserve all existing lub’s in this process, and the most we
can do, in general, is preserve exactly the lub’s corresponding to ®. Furthermore,
by preserving only the necessary lub’s, we succeed in producing an initial object in
the category of <-inequationally fully abstract, ®-least fixed point, complete ordered
algebras, together with continuous homomorphisms.

Lemma 5.1.1 Suppose ® is a closed family of least fixed point constraints and <
is an Q-least substitutive pre-ordering over T that satisfies ®. Define an S-indezed
family T of sets of subsets of OT /=< by

T, ={qT |t=T" € ®,}.

Then T is a family of subsets of OT /<, and OT /=< is I'-complete.
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Proof. Clearly I' consists of sets of directed subsets of OT /<. Let a € (0T /=),
s € S; we must show that {a} € I';. Since ¢t is surjective, there is a t € OT such
that gt,t = a. Furthermore, by lemma 3.2.5, t=| [{t} € ®, and thus

{a} ={qt,t} = ¢t {t} € L.
Now, suppose o € ¥ has type s; X -+ x s, = s and t,=|I] € ®,,, 1 < i < n. Then,

ol(qt,, T7) x - -- x (qt,, 1)) = gty o(T7 x --- x T})
€ Fs’a

since
olty, ..., ty)=o (1] x -+ x 1) € Dy
Thus, I is indeed a family of subsets of OT /<.

Suppose t=|T" € ®,, s € S; we must show that ¢g¢, 7" has a lub in (0T /=),. By
assumption, t is a lub of 7" in (T}, <), and thus, by corollary 2.4.17, ¢t t is the lub
of gt, T" in (OT/=)s. Suppose o € ¥ has type s; X --- X s, = s’ and t,=|1] € ,,,
1 < <n. Then,

ol Jat, T1, ..., | at,, Tp) = o{qt, ta,. .., qt, tn)
=gty o(ty,...,tn)
=| gty o(T] x - x 1))

= | Jo((qt,, TY) x -+~ x (qt,, T))-
Thus OT /< is indeed ['-complete. O

We now give a definition that is based upon lemma 5.1.1 and theorem 2.4.2.

Definition 5.1.2 Let ® be a closed family of least fixed point constraints and < be
an ()-least substitutive pre-ordering over 7 that satisfies ®. The complete ordered
algebra Z(=<, ®) is defined to be (OT /=<)", where T is defined as in the statement of
lemma 5.1.1.

Theorem 5.1.3 Suppose ® is a closed family of least fized point constraints and <
is an Q-least substitutive pre-ordering over T that satisfies P.

(i) Z(=X, @) is a =-inequationally fully abstract, ®-least fized point, complete or-
dered algebra.

(ii) If A is a ="-inequationally fully abstract, ®-least fived point, complete ordered
algebra, for an Q-least substitutive pre-ordering =<' over T such that < C =<', then
there is a unique continuous homomorphism h:Z(=<,®) — A.
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Proof. Let I' be the family of subsets of OT /< that was defined in the statement
of lemma 5.1.1.

M4 //(MA/j)F

We begin by showing (i). Clearly (OT /=)' is a complete ordered algebra. To see
that it is <-inequationally fully abstract, let t;,t, € T, s € S. Then,

tl js tg Iff qts tl ES qts tg

iff emg(qt, t1) s ems(qt,ta),

since em is an order-embedding. To see that (OT/=X)" satisfies ®, suppose that
t=T" € &, s € S. By assumption, t is a lub of 7" in (T}, <), and thus, by corollary
2417, qt,t = qt, T". Then,

emy(qt,t) = ems| |qt, T" = | em,(qt, T7),

since em is I'-continuous.
Next, we consider (ii). If ¢;,t, € S, s € S, then

ty st =t 2Lty = Mgty T M to.

Thus (}) there is a unique monotonic homomorphism M 4/=< from OT /< to A such
that (My4/=) o gt = M 4. Furthermore, M 4/= is I'-continuous, since if (= |T" € P,
s € S, then

(Ma/=)s| gt T" = (Ma/=)s(qt,t)

Thus (1) there is a unique continuous homomorphism (M4/=)! from (OT /<)F to A
such that (M4/=<)" o em = M,/=. For uniqueness, suppose h: (OT /<)' — A is a
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continuous homomorphism. By the initiality of OT, we know that (hoem)oqt = M4,
and thus by (1) that ho em = M4/=<. The fact that h = (M4/=<)' then follows from

(1. O
Theorem 5.1.4 Suppose ® is a family of least fixed point constraints and < is an

Q-least substitutive pre-ordering over T. A <-inequationally fully abstract, ®-least
fized point, complete ordered algebra exists iff < satisfies .

Proof. The “if” direction follows immediately from theorem 5.1.3. For the “only if”
direction, suppose A is a <-inequationally fully abstract, ®-least fixed point, complete
ordered algebra. By lemma 3.2.7, A also satisfies ®. Suppose t=]T" € ®,, s € S.
Then Mgt = || M;T', and thus ¢ is an ub of 7" in (Ts, <;). Suppose t” is also an ub
of T'. Then M,t" is an ub of M;T', and so M,t T, M t". But this, in turn, implies
that ¢ <, ¢”, showing that ¢ is a lub of 7" in (T}, <;), as required. O

Corollary 5.1.5 If the category of <-inequationally fully abstract, ®-least fized point,
complete ordered algebras, together with continuous homomorphisms, is nonempty
then it has an initial object, T(<,®).

Proof. Immediate from theorems 5.1.3 and 5.1.4. O

We conclude this section with the corollary that Z(=,®) is always inductively
reachable. Thus, if the category of inductively reachable <-inequationally fully ab-
stract, ®-least fixed point, complete ordered algebras, together with continuous ho-
momorphisms, is nonempty then it has Z(=<, ®) as an initial object.

Corollary 5.1.6 If ® is a closed family of least fized point constraints and < is an
Q-least substitutive pre-ordering over T that satisfies ® then (=X, ®) is inductively
reachable.

Proof. By lemma 2.3.33, it is sufficient to show that Z(=<, ®) and R(Z(=X,®)) are
order-isomorphic. Since Z(=,®) is initial in the category of <-inequationally fully
abstract, ®-least fixed point, complete ordered algebras, together with continuous
homomorphisms (corollary 5.1.5), it is sufficient to show that R(Z(=<, ®)) is also initial
in this category. It is easy to see that R(Z(=, ®)) is a <-inequationally fully abstract,
®-least fixed point, complete ordered algebra, since R(Z(=<,®)) < Z(=X,®). Let i be
the inclusion from R(I(=<,®)) to I(=<,®), so that i is a continuous homomorphism
from R(Z(=X,®)) to Z(=,®). Suppose A is a <-inequationally fully abstract, ®-least
fixed point, complete ordered algebra, and let h: Z(=<, ®)—.A be the unique continuous
homomorphism. Then hoi is the unique continuous homomorphism from R(Z(=, ®))
to A, by lemma 2.3.31. O
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5.2 More Existence Results

This section consists of two corollaries of theorem 5.1.4. In the first, we show that
inequationally fully abstract, complete ordered algebras always exist and give a nec-
essary and sufficient condition for the existence of inequationally correct, least fixed
point, complete ordered algebras. In the second, we give necessary and sufficient
conditions for the existence of equationally fully abstract (respectively, equationally
correct), least fixed point, complete ordered algebras, and equationally fully abstract,
complete ordered algebras, as well as showing that equationally correct, complete
ordered algebras always exist.

Corollary 5.2.1 Let < be an 2-least substitutive pre-ordering over T and ® a family
of least fized point constraints.

(i) A <-inequationally fully abstract, complete ordered algebra exists.

(ii) A <-inequationally correct, ®-least fized point, complete ordered algebra exists
iff there exists an Q-least substitutive pre-ordering =<' over T such that <" C < and
<! satisfies ®.

Proof. (i) By lemma 3.2.6, the least closed family of least fixed point constraints,
(), consists of exactly the singleton constraints t=|1{t}, ¢ € T}, s € S. Thus < satisfies
(@, and the result follows by theorem 5.1.4.

(ii) (=) Suppose A is a <-inequationally correct, ®-least fixed point, complete
ordered algebra. Then <4 C <. Further, A is <4-inequationally fully abstract,
and thus, by theorem 5.1.4, <4 satisfies ®. (<) By theorem 5.1.4, there is a <'-
inequationally fully abstract, ®-least fixed point, complete ordered algebra, and, since
<" C <, A is =-inequationally correct. O

It is easy to find artificial examples of < and ® such that no <-inequationally cor-
rect, ®-least fixed point, complete ordered algebras exist. It would be quite surprising,
however, if natural examples existed.

Corollary 5.2.2 Let ~ be a congruence over T and ® be a family of least fived point
constraints.

(i) A =-fully abstract, ®-least fized point, complete ordered algebra exists iff there
is an $2-least substitutive pre-ordering < over T such that = = < N > and < satisfies
.

(ii) A =-fully abstract, complete ordered algebra exists iff there is an Q-least
substitutive pre-ordering < over T such that ~ = <N >.
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(iii) A =~-correct, ®-least fized point, complete ordered algebra exists iff there is
an Q-least substitutive pre-ordering < over T such that < N = C =~ and =< satisfies
.

(iv) A =-correct, complete ordered algebra exists.

Proof. (i) (=) Suppose A is a ~-fully abstract, ®-least fixed point, complete
ordered algebra. Then =~ = <4 N > 4. Further, A is < 4-inequationally fully abstract,
and thus, by theorem 5.1.4, <4 satisfies ®. (<) By theorem 5.1.4, there exists a <-
inequationally fully abstract, ®-least fixed point, complete ordered algebra A, and,
since &~ = <N =, A is a-fully abstract.

(ii) Follows from (i), with ® = ().

(iii) (=) Suppose A is a ~-correct, ®-least fixed point, complete ordered algebra.
Then =~ 4 C ~. Further, A is ~ 4-fully abstract, and thus, by (i), there is an {)-least

substitutive pre-ordering < over 7 such that
“Nz=r4Cx

and < satisfies ®. (<) Let &' = <N =. By (i), there exists a ~/'-fully abstract,
®-least fixed point, complete ordered algebra A, and, since

~=xnzcCw,

A is ~-correct.

(iv) Since <% is a partial ordering, <% N =% is the least congruence over 7T (no
distinct terms are congruent). Thus <% N =% C =, and the result follows by applying
(iii), with < = <% and ® = 0. O

By lemma 2.2.13, we know that not every congruence ~ over 7 is induced by an
()-least substitutive pre-ordering, and thus, by corollary 5.2.2 (ii), a-fully abstract,
complete ordered algebras do not always exist. It is unclear whether there are nat-
urally occurring congruences that are not induced by such pre-orderings. Similarly,
it is not difficult to find artificial examples of ~ and ® such that no =~-correct, ®-
least fixed point, complete ordered algebras exist. It would be surprising, however, if
natural examples existed.

Corollary 5.2.2 (i) is the basis for the negative results of chapter 6.
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5.3 Contextual Full Abstraction and Least Fixed
Point Models

In this section, we show that inductively reachable, ~-fully abstract, A*-least fixed
point, complete ordered algebras, for congruences =~ over 7 and families of contextual
least fixed point constraints A, are also ~-contextually fully abstract, A-contextually
least fixed point, complete ordered algebras. Thus ~-contextually fully abstract, A-
contextually least fixed point, complete ordered algebras exist exactly when ~-fully
abstract, A*-least fixed point, complete ordered algebras do.

Theorem 5.3.1 Suppose A is an inductively reachable complete ordered algebra and
~ is a congruence over T . Then A is =~-fully abstract iff A is ~-contextually fully
abstract.

Proof. The “if” direction is obvious. (The hypothesis of inductive reachabil-
ity is not needed.) For the “only if” direction, first note that, by theorem 3.1.5,
A is =-contextually correct. Thus, we need only show that for all derived opera-
tors ¢p[vy,...,v,] and cofvy, ..., v,] of type s; X -+ X s, = "1 if ¢ (ty, ..., t,) =y
co(ty, ... ty), forall t; € Ty, 1 < i < n, then ¢; 4 = co4. We show this by induction
on the arity n of ¢; and ¢y. The case n = 0 holds since A is ~-fully abstract. For the
induction step, suppose that ¢ [v, ..., v,41] and eofvy, . .., v,41] are derived operators
of type sy X+ -+ X sp,11—5", and that ¢;(ty, ..., thy1) Ry c2(tr, ..., thy1), forallt; € Ty,
1 <i<n+1. We show by induction over A that for all a,,, € A

Sn+1 Sn+41?

ci{ar, ..., an11) = c2{ay, ... an41), foralla; € A, 1 <i <n. (5.1)

Let A’ be the set of all a,4; € A, ,, such that (5.1). Suppose t € T, ,; we must show
that M,

sup1 t € AL Then (ci(vr,..., 05, 1)) [v1,...,v5] and (covr, ..., v, t))[v1, ..., Up)
are derived operators of type s; X -+ X s, — s', and, by the inductive hypothesis on
n, for all a; € A, 1 <1 < n,

ci{a, ... an, My, 1) = (c1(v1, ..., 0n, 1)) (a1, .., an)
= (ea(v1, .., op, 1)) ag, ..., a,)

= cofar, ..., an, My, ).

Now, suppose D C A’ is a directed set; we must show that | |D € A’'. Suppose
a; € As,, 1 <i < n. Then,

ci{ar, ..., an,| | D) =| Jea({ar} x - x {a,} x D)
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= | ]e({ar} x -+ x {a,} x D)
= ¢&(a, ..., an,| | D),

since A is complete. O

Theorem 5.3.2 If A is a family of contextual least fixed point constraints and A is
an inductively reachable complete ordered algebra then A satisfies A iff A satisfies the
family of least fized point constraints A*.

Proof. The “only if” direction follows by lemma 3.2.11. For the “if” direction,
it is sufficient to show that for all distinct context variables v; € Vi, 1 <1 < n,
c € T({vy,...,v,})s and directed sets C' C OT ({vy,...,v,})s: if

Mgc(ty, ..., t) = || Myd{t,... 1),
ceC’

for all ¢; € TS;, 1 <1 <n, then

We show this by induction on n. The case n = 0 is trivial. For the induction step,
suppose that v; € Vg, 1 <i <n+1,c€ T({vy,...,v541})s, €' C OT({vr, ..., 041 })s
is a directed set, and

Ms C<t17 s Jtn+1> - |_| Ms Cl<t17 s Jtn—l—l);
c'eC’
for all ¢; € Ts;, 1 < i < n+ 1. We show by induction over As'n+1 that for all
(pt1 € As’

n+1’

c{ay, ... Gn41) = |_| d{ay,...,a,41), for all q; € Ag,1<i<n. (5.2)
cec

Let A" be the set of all a,,1 € As:n+1 such that (5.2). Suppose t' € Ty, ;s we must
show that M, t' e A'. Then,

c(vy, ... o, t)y € T{vr,...,00})s,

and
{(v1,...,0,t") | €C"} COT{vr,...,0n})s
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is a directed set. Further, for all ¢; € Ty, 1 <@ <,
My(c{vr, ooy, ) (1, -y tn) = Mgty ... by, t')
= || M,d{ts,... tn,t)

c'ec’
= || Ms((v1,...,0n, ) {t1,... tn).
cec’

Thus, by the inductive hypothesis on n,

c{ar, ..., an, My 1) = (c(v1,..., 00, ) an, ..., ap)
= || (d{ui,. . vn, ) ar, ... an)
cdec’
= || c'(al,...,an,Msant'%
ced’

for all a; € Ay, 1 <4 < n. Now, suppose D C A’ is a directed set; we must show
that ||D € A'. Let q; € AS'N 1 <7 < n. Then,

c(al,...,an,l_lD> = |_| clar, ..., ap,d)

deD

— |_| |_| d{a, ..., a,,d)

deD e’

= |_| |_| c’<a1,...,an,d>
¢eC! deD

= |_| c'(al,...,an,l_lD),
ceC’

as required. 0O

Corollary 5.3.3 Suppose = is a congruence over T and A s a family of contextual
least fized point constraints. If A is a ~-fully abstract, A*-least fized point, complete
ordered algebra then R(A) is a ~-contextually fully abstract, A-contezstually least fized
point, complete ordered algebra.

Proof. Since R(A) < A, R(A) is also a ~-fully abstract, A*-least fixed point,
complete ordered algebra. The result then follows from theorems 5.3.1 and 5.3.2. O

Corollary 5.3.4 Suppose ~ is a congruence over T and A is a family of contex-
tual least fized point constraints. Then, there exists a =-contextually fully abstract,
A-contextually least fized point, complete ordered algebra iff there exists a ~-fully
abstract, A*-least fized point, complete ordered algebra iff there exists an Q-least sub-
stitutive pre-ordering < over T such that ~ = <N > and < satisfies A*.

Proof. Immediate from lemma 3.2.11, corollary 5.3.3 and corollary 5.2.2 (i). O
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5.4 Categorical Properties

In this section, we prove theorems concerning the existence of initial objects and the
nonexistence of terminal objects in various categories of correct and fully abstract,
least fixed point, complete ordered algebras, and show the existence of nonisomor-
phic inductively reachable, inequationally fully abstract, least fixed point, complete
ordered algebras.

To begin with, we name the categories we will be considering. Let L(®) be the
category of ®-least fixed point, complete ordered algebras, together with continuous
homomorphisms. Define the following full subcategories of L(®).

Category  Objects

C(~, ®) ~z-correct

FA(~,®) ~-fully abstract

IC(<,®)  =-inequationally correct
IFA(=<,®) =-inequationally fully abstract

In addition, let RL(®), RC(=, ®), RFA(=~, ), RIC(=, ®), and RIFA (=, ®) be the
full subcategories of L(®), C(~, ®), etc., whose objects are inductively reachable.
Note that FA (=, ®) (respectively, RFA (=, ®)) is a subcategory of C(~, ®) (respec-
tively, RC(=2, ®)), and IFA (=X, ®) (respectively, RIFA(=,®)) is a subcategory of
IC(=,®) (respectively, RIC(=, ®)).

In section 5.1, we learned that if the category IFA (=, ®) is nonempty then it has
an initial object, Z(=<, ®). We now prove analogous theorems for our other categories.
Theorem 5.4.1 shows that L(®) always has an initial object A, and that if C(=, ®)
(respectively, IC(=, ®)) is nonempty then it also has A as an initial object.

Theorem 5.4.1 Suppose ® is a family of least fived point constraints and let <° be
the least Q-least substitutive pre-ordering over T that satisfies ®.
(i) Z(=Z°, @) is initial in L(P).
(ii) If C(~, ®) is nonempty, for a congruence =~ over T, then it has Z(=<°,®) as
an nitial object.
(iii) If IC(=X, @) is nonempty, for an Q-least substitutive pre-ordering < over T,
then it has Z(=X°, ®) as an initial object.

Proof. We begin by showing that such a <" exists. Let X be the set of all <
such that < is an Q-least substitutive pre-ordering over 7 that satisfies ®. Then X
is nonempty, since the greatest Q-least substitutive pre-ordering over T (every term
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is less than every other term) satisfies ®, and it is easy to see that (1 X is the least
(-least substitutive pre-ordering over 7 that satisfies ®.

(i) Clearly Z(=<°, ®) is an object of L(®). Suppose A is also a ®-least fixed point,
complete ordered algebra. Then A is < 4-inequationally fully abstract, and, by lemma
3.2.7, A satisfies ®. By theorem 5.1.4, <4 satisfies ®, and thus, by the leastness of
=<0, <0 C <4. The existence of the unique continuous homomorphism from Z(=<°, ®)
to A then follows from theorem 5.1.3.

(i) By (i), it is sufficient to show that Z(=<° ®) is an object of C(=, ®), i.e.,
that it is ~-correct. Let ~° = <N =Y Then Z(=° ®) is ~ fully abstract, and
thus it is sufficient to show that ~° C ~. By corollary 5.2.2 (iii), there is an {2-least
substitutive pre-ordering < over 7 such that < N > C ~ and < satisfies ®. Then,
by the leastness of <, <° C <, and thus

M=xnz"cxnzcw

(iii) By (i), it is sufficient to show that Z(=<° ®) is an object of IC(=, ®), i.e., that
it is <-inequationally correct. Thus it is sufficient to show that <° C <. By corollary
5.2.1 (ii), there is an Q-least substitutive pre-ordering <’ over 7 such that <" C <
and =<’ satisfies ®. Then, by the leastness of <%, <% C <’  and thus <° C <. O

Theorem 5.4.2 Suppose © is a family of least fized point constraints and ~ is a
congruence over T. If FA(=, ®) is nonempty then it has Z(=°, ®) as an initial object,
where <° is the least Q-least substitutive pre-ordering over T such that <° satisfies ®
and ~ = <N >0,

Proof. We begin by showing that such a <° exists. Let X be the set of all Q-least
substitutive pre-orderings over 7 that satisfy ® and induce ~. Then X is nonempty,
by corollary 5.2.2 (i), and it is easy to see that (| X may be taken as <°.

Clearly Z(=°, ®) is an object of FA (a2, ®). Suppose A is also a ~-fully abstract,
®-least fixed point, complete ordered algebra. Then ~ = <4 N >4, and, by theorem
5.1.4, <4 satisfies ®. By the leastness of <%, <0 C <, and thus, by theorem 5.1.3,
there is a unique continuous homomorphism from Z(<°, @) to A. O

We now turn our attention to the subcategories of inductively reachable objects:
RC(~, ®), RFA(~, ®), RIC(=,®) and RIFA(=,®). Since Z(=X,®) is always in-
ductively reachable, all of these categories have initial objects whenever they are
nonempty.

The next theorem shows, perhaps surprisingly, that RIFA (=<, ®) can have noni-
somorphic objects.
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Theorem 5.4.3 There is a signature 3, an Q-least substitutive pre-ordering =< over
T and a family of least fixed point constraints ® such that RIFA(=X, ®) has noniso-
morphic objects.

Proof. Let X over S = {x} consist of the following nullary operators: Q,, = and
n, n € w. Since there is only one sort, we drop the sort subscripts from carriers,
relations, etc., below. Define ordered algebras A and B as follows. Their carriers are
defined by

T
|
x Y
1 1
| |
| T
Q Q
A B

so that x = ||, w and y = ||z w. Their operations are interpreted by themselves. It
is easy to see that A and B are non order-isomorphic inductively reachable, complete
ordered algebras. Furthermore, <4 = <g. Thus the theorem holds with < = <4 and
o=0. O

We now consider the existence of terminal objects in our categories of inductively
reachable objects. Theorem 5.4.4 shows that RFA (=, ®) can be nonempty yet lack
a terminal object. Thus, even when RFA (=, ®) is nonempty, RC(~, ®) can lack a
terminal object. The situation is less clear for RIFA (=, ®) and RIC(=<, ®). Theorem
5.4.5 shows that RIC(=,®) can lack a terminal object, even when RIFA (=, ®) is
nonempty. It is open, however, whether RIFA (<, ®) always has a terminal object
whenever it is nonempty; I conjecture that it always does.

Theorem 5.4.4 There is a signature X, a congruence =~ over T and a family of
least fized point constraints ® such that RFA (=, ®) is nonempty but lacks a terminal
object.
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Proof. Let ¥ over S = {x} consist of the nullary operators €2, x and y. Since
there is only one sort, we drop the sort subscripts from carriers, relations, etc., below.
Define ordered algebras A and B as follows. Their carriers are defined by

Y
|

x
|

Q

oK — R

A B

and their operations are interpreted by themselves. Clearly A and B are inductively
reachable complete ordered algebras. Furthermore, ~4 = =g, and, in particular,
z %4 y. Thus A and B are RFA (=, ®) objects, where &~ = ~ 4 and ® = (). Suppose,
toward a contradiction, that C is terminal in RFA (~, ®), and let f: A—C and g: B—C
be the unique continuous homomorphisms. But then

Mex=fzxCc fy=Mcy
and
Mcy=g9yCc g = M,
showing that M¢x = M y—a contradiction. O
Theorem 5.4.5 There is a signature 3, an Q-least substitutive pre-ordering =< over
T and a family of least fived point constraints ® such that RIFA(=, ®) is nonempty

but RIC(=, @) lacks a terminal object. In particular, there is a RIC(=, ®) object that
cannot be collapsed, via a continuous homomorphism, to any RIFA(=, ®) object.

Proof. Let X over S = {%} consist of the following nullary operators: €, x, y
and n, n € w. Since there is only one sort, we drop the sort subscripts from carriers,
relations, etc., below. Define < over 7 by
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@_O_'—‘ .o

Y

and let ® = (). Then Z(<,®) is a RIFA (=, ®) object. Define an ordered algebra A
as follows. Its carrier is defined by

Y

and its operations are interpreted by themselves. It is easy to see that A is an
inductively reachable complete ordered algebra. Furthermore, A is <-inequationally
correct, and thus is a RIC(=, ®) object. Suppose, toward a contradiction, that B
is a RIFA (=, ®) object, and that h: A — B is a continuous homomorphism. Then
Mgy = || Mgw. By inequational full abstraction, Mg x is an ub of Mpw, and thus
Mgy Ep Mgx. But this implies that y < z—a contradiction. Finally, suppose
toward a contradiction that RIC(=<,®) has a terminal object, C. Then C is =<-
inequationally fully abstract, since RIFA (=, ®) is nonempty. But, by the above, this
yields a contradiction. O

Conjecture 5.4.6 The category RIFA(=X, ®) always has a terminal object, whenever
it 18 monempty.

My reasons for making this conjecture are largely negative: my attempts at finding
a counterexample have failed. To prove the conjecture, it would be sufficient to
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show that inequational full abstraction is preserved by arbitrary coproducts in the
category of inductively reachable complete ordered algebras, together with continuous
homomorphisms. Then the terminal object would be the coproduct of representatives
of all of the isomorphism classes in RIFA (=<, ®). (The number of isomorphism classes
in RIFA (=<, @) is bounded, since every element of an inductively reachable complete
ordered algebra is the lub of a (not necessarily directed) set of denotable elements.)
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Chapter 6

Negative Results

This chapter consists of proofs of the nonexistence of fully abstract models of two
nondeterministic imperative programming languages: one with random assignment
and the other with infinite output streams. We give operational semantics for these
languages, define notions of program equivalence in terms of these semantics, and
use the condition for the existence of equationally fully abstract, least fixed point,
complete ordered algebras given in chapter 5 in order to prove the negative results.
No model-theoretic reasoning is involved in these proofs.

The language with random assignment is taken from [AptPlo] (with minor vari-
ations). Our proof of the nonexistence of fully abstract models of this language is a
simplification of theirs. Our treatment of the language with infinite output streams is
motivated by Abramsky’s negative result for a nondeterministic applicative language
with infinite streams [Abr3].

6.1 A Language with Random Assignment

In this section, we study a nondeterministic imperative programming language with
random assignment statements (z:=?7), which nondeterministically choose natural
numbers and assign them to identifiers. The language also includes binary nonde-
terministic choice (or), which nondeterministically selects one of its arguments to be
executed, as well as the usual null (skip), assignment (x:=n, etc.), sequencing (;),
conditional and iteration statements. We begin by defining the language’s syntax,
i.e., its signature.
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Definition 6.1.1 Let [ be a countably infinite set of identifiers, and the set of boolean
expressions Erp be

{z=0|zel}U{z#0|xzel}.

Define a signature 3 over S = {x} with the following operators:
(1) Qu, skip, x:=n, x:=x+1, r:=x—1, z:=y and x:=7 of type x, for all x,y € I
and n € w;
(ii) while E do—od of type x — %, for all E' € Ezp; and
(iii) ; , or, and if E then—else—fi of type * X x — x, for all E € Exp.
We let ; and or associate to the right, and drop the single sort * from carriers,
relations, etc., below.

Definition 6.1.2 Let the set of states Sta be I - N. For o € Sta, x €  andn € N,
define o[z] € N and o[n/x] € Sta by:

olz] = ox;

oln/ely = {

n ify=ux,
oy otherwise.

Define an evaluation map for boolean expressions &: Exp — Sta — Tr by:

=00 — tt if ofx] =0,
£o=0 { F itold] £0

|t ifofx] #0,
Eaflo = { f ifolz] = 0.

Definition 6.1.3 We define a transition system for our language as follows. Its set
of configurations T is (T' x Sta) U Sta. Its transition relation — is the least binary
relation over I satisfying the following conditions, for all x,y € I, n € w, £ € Exp,
t,t1,t),to € T and o,0' € Sta:
(Q,0) = (Q,0),
(skip,o) — o,
(x:=n,0) = o[n/x],
(x:=x+1,0) — olo[z] + 1/z],

(v:=x—1,0) — olo[z] — 1/x] (o[x] #0),
(r:=0—1,0) = 0 (olz] =0
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(r:=y,0) = ololyl/z],
(x:=7,0) = o[n/x],

(while E dot od, o) — (t; while E dot od, o) (EEo =tt),

(while Edotod,o) — o (EEo=f),
(t1,0) — (t},0") (t1,0) = o'
<t1;t270> - < ,1;t270,>7 <t1;t270> - <t270,>7
(tl 07't2,0'>—)<t1,0'>, <t1 07’t2,0’>—><t2,0'>,

(if Ethent, elsety fi,o) — (t;,0) (EEo =tt),
(if Ethenty elsety fi,o) — (ty,0) (€ Eo = [ff).

Definition 6.1.4 The family —,, n € w, of binary relations over I' is defined by:

Y=o Y2 iE oy =1,
Y —ni1 Ve My = 7 — 72, for some’ €T

We say that v may diverge, written v 1, iff there exists a ¥ € I'Y such that 7, = 7,
and ’71 — ’?H_l, for all 2 € w.

Thus, 71 —* 7, iff there exists an n € w such that v, —, 7s.
Next, we define notions of program behaviour and equivalence for our language.

Definition 6.1.5 The evaluation map
O:T — Sta — P(Sta U {L})
(for some L ¢ Sta) is defined by:
Oto={0o"|{t,o) ="' yU{L]|(t,o) 1}
Define an equivalence relation =~ over 1" by:
ti =ty it Oty = Ots.

Thus, ~¢ is a congruence over 7. The next lemma shows that ~ is already a
congruence.

Lemma 6.1.6 ~°¢ =~
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Proof. By lemma 2.2.25, it is sufficient to show that = is substitutive. We only
show substitutivity under ; and while E do—od, leaving the or and if E then—else—fi
cases, which are simpler, to the reader.

For ;, suppose that ¢; ~ | and t; ~ t}; we must show that t;;t, ~ t|;t,. By the
symmetry of =/, it is sufficient to show that

(t1;t2,0) =" o'

Wty 0) = o for all o, 0" € Sta, (6.1)
15 02,0 o
and .
%, for all o € Sta. (6.2)
1) Y2

For (6.1), if (t1;ty, 0) —* o' then there is a ¢” such that (¢;,0) —* ¢” and (ty,0") —*
o'. Thus, from the assumption that t; ~ t;, i = 1,2, it follows that (t;,0) —=* o”
and (t,,0") —* o', and thus that (t};t,,0) —* o'. For (6.2), if (¢;;t2,0) 1 then
either (t1,0) 1 or there is a ¢’ such that (t;,0) —=* o' and (ty,0') 1. In the first case,
(t},0) 1, by the assumption, and thus (#};t,,0) 1. In the second case, (t|,0) —=* o’
and (t,,0') 1, showing that (t\;t,,0) 7.

For while E do—od, E € Exp, suppose that ¢t &~ t'; we must show that

while E dot od ~ while E dot' od.

By the symmetry of =, it is sufficient to show that

(while E dot od, o) —* o
(while E dot’ od, o) —* o'’ for all 0, 0" € Sta, (6.3)

and
(while E dotod,o) 1

(while E dot' od,o) T
For (6.3), it is sufficient to show that for all n € w,

, for all 0 € Sta. (6.4)

(while E dot od, o) —, o ,
for all -
<whlleE dO t, Od7 U> —x O—l’ or a 0,0 € S a

We prove this by course of values induction over n. Suppose that
(while E dot od, o) —, o'
If £ Fo = ff then 0 = ¢’ and

(while E dot' od, o) —* o'
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So, assume that £ E'o = tt. Then there is a 0" and an m < n such that (t,0) —* 0",

(while E dotod,o) — (t;while E dotod,o)
—* (while E dot od,o"),

and
(while E dot od, 0"y —,, o'

The result then follows from the assumption that ¢t &~ ¢’ and the inductive hypothesis
on m. For (6.4), note that for all o and ¥ € T¥, if 4y = (while E dot od, o), and
Yi = Fiv1, for all i € w, then either (¢, o) 1 or there exists an ¢ > 0 and a ¢’ such that
(t,0) =* o' and ¥; = (while E dot od,o'). Thus, if (while E dot od,o) 1 then we can
choose a 7' € I'¥ such that 7 = (while E' dot' od, o), and 7, — 7., forall i c w. O

Next, we define a family of least fixed point constraints ® for our language, and
prove that complete ordered algebras satisfy @ iff they give the usual least fixed point
meanings to while-loops.

Definition 6.1.7 Let the family of least fixed point constraints ® be
{ while E dot od=||[{ W"(E,t) |[n€w} | E € Ezp,t € T},
where W"(E,t) is the w-chain in OT defined by
WO(E,t) = Q,
W™HE,t) = if Ethent; W"(E, 1) else skip fi.

Lemma 6.1.8 A complete ordered algebra A is a ®-least fized point model iff for all
E e FErpandteT,
M while Edotod = | | w™(E,t),

ncw

where w"(E,t) is the w-chain in A defined by
w'(E,t) = L,
w"tH(E,t) = if Ethen (M t);w"(E,t) else skip fi.

Proof. A simple induction on n shows that for all n € w, M W™(E,t) = w™(E, 1),
and thus

M while Edotod = | | M W™(E,t) iff M whileEdotod= || w"(E,1),

necw new

as required. 0O
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We can now prove the main result of this section: there is no fully abstract, least
fixed point model for our programming language.

Theorem 6.1.9 There does not exist a ~-fully abstract, ®-least fized point, complete
ordered algebra.

Proof. Suppose, toward a contradiction, that such an ordered algebra does exist.
Then, by corollary 5.2.2 (i), there is an -least substitutive pre-ordering < over T
such that ~ = <N > and < satisfies ®. Let the term ¢ be

x:="7; while t£0 do x:=x—1 od,
and the w-chain ¢, in OT be defined by
=7, W"(x#£0, z:=x—1).

Then ¢ is a lub of ¢, in (T, <), since t=[|{t, | n € w} € ® and < satisfies . But
t = x:=0, tj & Q and t], ., = xr:=00rQ, for all n € w, which implies that z:=0 is
a lub of {Q, 2:=0 or Q} in (T, <), and thus that 2:=0 ~ z:=0 or 1—a contradiction.
(|

An apparently stronger result is actually proved in [AptPlo]: there does not exist
a ®-least fixed point, complete ordered algebra A, together with a continuous full
abstraction function, i.e., a continuous function A from A to a cpo B with the property
that
ty &ty it h(M t1) = h(M ts),

for all ¢1,t, € T. Corollary 7.1.2 shows, however, that if a full abstraction function
exists for a least fixed point model of a programming language then a fully abstract,
least fixed point model also exists for that language. Thus their result follows, by a
language-independent corollary, from theorem 6.1.9.

On the other hand, the negative result of [AptPlo] is stronger than ours in the
following respect. As an essential part of our theory, we have included the constant
(2 in our language, and required that it be interpreted as the least element of any
model. Furthermore, it is easy to see that any term that diverges in all states, such
as

x:=0; while =0 do skip od,

is equivalent to €2, and thus must also have the value L in any model. Thus our
theorem 6.1.9 leaves open the possibility that a fully abstract, least fixed point model
exists in which such divergent terms have a non-1 meaning. The negative result of
[AptPlo] shows, however, that no such models exist.
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6.2 A Nondeterministic Language with Infinite
Output Streams

In this section, we study a nondeterministic imperative programming language with
output statements (output x), which write the values of identifiers into potentially
infinite-length output streams. Otherwise the language is the same as that of section
6.1, with the exception that random assignment statements are not included.

Definition 6.2.1 Let the sets I of identifiers and FExp of boolean expressions be the
same as in section 6.1. The signature Y is also the same, with the exception that
the family of constants x:=7, x € I, is replaced by the family output x, x € I. The
set Sta of states and its associated operations are as in definition 6.1.2. We define a
transition system for our language as follows. Its set of configurations I" is

(T x Sta x N*) U (Sta x N*),

where the element 6 € N* in a configuration 7 is intended to be the output produced
before reaching . Its transition relation — is the least binary relation over I' sat-
isfying the following conditions, for all x,y € I, E € Exp, n € w, t,t,t],t, € T,
o,0" € Sta and §,0" € N*:

(Q,0,0) = (Q,0,0),
(skip,0,0) — (0,0),
(x:=n,0,0) — (o[n/x],d),

(v:=x+1,0,0) = (o|o[z] + 1/z],0),
(v:=0—1,0,6) = (olo[z] —1/z],0)  (o[z] #0),
(z:=2—1,0,8) —= (5,0) (olz] = 0),

(r:=y,0,0) — (oloy]/z], ),
(output x,0,0) — (0,6 (o[z])),
(while E dot od,o,6) — (t;while Edotod,o,8) (£ Eo=1t),

(while E dot od,0,0) — (0,0) (EEo=[f),
(t1,0,0) = (t},0',d") (t1,0,0) = (0o',¢")
<t1;t2707 5> — <t’1;t270,76,>7 <t1;t2707 5> — <t270,76,>7
<t1 ortsy, o, 6> — (tl,O', 5), <t1 ortsy, o, (S> — <t2,0’, (S>,
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(if E'thent, elsets fi,0,0) — (t1,0,0) (EEo =1t),
(if Ethenty elsety fi,0,0) — (ta,0,0) (EEo=[f).

Definition 6.2.2 The function out:I' — N* is defined by:

out (t,0,9) = 0,
out (o,d) = 0.

For v € I' and § € N°°, we say that v may diverge with output ¢, written ~ 1 6, iff
there is a 4 € I'¥ such that ¥y = v, 7; = 741, for all i € w, and § = U, out 7;.

It is easy to see that out vy C out v if v1 — s.
Next, we define notions of program behaviour and equivalence for our language.

Definition 6.2.3 The evaluation map
O:T — Sta — P[(Sta x N*) U ({L} x N*)]
(for some L ¢ Sta) is defined by:
Oto={(d",0) | {t,0,()) =" (0,0) JU{(L,0) | (t,0,()) 10}
Define an equivalence relation =~ over 1" by:
L=t it Oty = Ots.

Thus, ~¢ is a congruence over 7. The next lemma shows that ~ is already a
congruence.

Lemma 6.2.4 ~° =~

Proof. The proof is similar to that of lemma 6.1.6, and uses the fact that if £; ~ ¢y
then
(t1,0,0) =* (o', 0"y iff (t,0,0) =" (0',d')

and
<t1, g, (5> T (5" iff <t2, g, (5> T 5,,,

for all 0,0’ € Sta, §,6' € N* and §" € N*°. O

Definition 6.2.5 The while-loop approximations W"(E,t) and the family of least
fixed point constraints ® have the same formal definitions as in definition 6.1.7.
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We can now prove the main result of this section: there is no fully abstract, least
fixed point model of our programming language.

Theorem 6.2.6 There does not exist a ~-fully abstract, ®-least fized point, complete
ordered algebra.

Proof. Suppose, toward a contradiction, that such an ordered algebra does exist.
By corollary 5.2.2 (i), there is an Q-least substitutive pre-ordering < over 7 such that
~ = <N > and < satisfies ®. Let the term ¢ be

r:=1;

y:=0;

while xZ£0 do y:=y+1 or x:=0 od,

while yZ0 do output x;y:=y—1 od;

Q,
so that Oto = {(L,0") | n € w}, where 0" is the sequence of zeroes of length n. Let
t' be

x:=0; while =0 do output = od,

and define an w-chain ¢ in OT by
x:=0; W"(x=0, output x).

Then Ot'oc = {(L,0¥)}, where 0¥ is the infinite sequence of zeroes, and Ot o =
{(L,0m}, for all n € w. Now, t ort’ is a lub of the w-chain ¢ ort!! in (T, <), since

(torth=l{tort! Incw} e,

and < satisfies ®. But t ort” ~t, for all n € w, and thus t or t' &~ t—a contradiction.
O
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Chapter 7

Obtaining Fully Abstract Models
from Correct Models

In this chapter, we investigate two approaches to obtaining fully abstract models from
correct ones. In section 7.1, we use the condition for the existence of inequationally
fully abstract models of chapter 5 in order to develop useful necessary and sufficient
conditions involving the existence of correct models. In section 7.2, we consider the
possibility of collapsing correct models, via continuous homomorphisms, to fully ab-
stract ones. We show that this is not always possible—indeed the natural continuous
function model £ of PCF provides a counterexample—but give sufficient conditions
for the possibility of collapsing inductively reachable correct models, via continuous
homomorphisms, to inductively reachable fully abstract models, and, more generally,
for collapsing the reachable inductive subalgebras of correct models to inductively
reachable fully abstract models. Both of these approaches yield fully abstract models
for the languages introduced in chapter 4 and, more generally, for languages whose
notions of program ordering and equivalence are defined as abstractions of models
using the technique of section 4.1.

In the case of PCF, we are able to continuously collapse R(£) to an inductively
reachable, inequationally fully abstract, least fixed point, complete ordered algebra
A. Furthermore, with some language specific work, we are able to show that A is
(up to order-isomorphism) the only object of the category of such models, and is an
order-extensional, standard, combinatory algebra. Thus, A is Milner’s fully abstract
model, and we have a pleasing, algebraic solution to Mulmuley’s problem of relating
& and A.
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7.1 Model-Theoretic Conditions

The following theorem gives two model-theoretic necessary and sufficient conditions
for the existence of inequationally fully abstract, least fixed point, complete ordered
algebras. Their necessity is obvious; theorem 5.1.4 is used to show their sufficiency. A
corollary of this theorem gives two model-theoretic necessary and sufficient conditions
for the existence of equationally fully abstract, least fixed point, complete ordered
algebras.

Theorem 7.1.1 Let < be an Q-least substitutive pre-ordering over T and ® be a
family of least fized point constraints. The following conditions are equivalent.

(i) A <-inequationally fully abstract, ®-least fized point, complete ordered algebra
erists.

(ii) There is a ®-least fized point, complete ordered algebra A, together with an
inductive pre-ordering < over A, such that

tl js t2 ZﬁMs tl Ss Ms t27

forallt,,to €Ty, s€ S.
(iii) There is a ®-least fived point, complete ordered algebra A, together with a
continuous function h from A to a cpo B, such that

tl js t2 7/./.‘fhs(]\fs tl) Es hs(Ms t2)7
forallt,,to €Ty, s€ S.

Proof. We show that (ii) = (i), (i) = (iii) and (iii) = (ii).

(ii) = (i) By theorem 5.1.4, it is sufficient to show that < satisfies . Suppose
t=||T" € ®,, s € S. By lemma 3.2.7, A satisfies ®, and thus M,t = || M, T". Since
C4 C <, it then follows that Mt is an ub of M;T" in (A, <j), and thus that ¢ is an
ub of T" in (T}, <,). Suppose t” is also an ub of 7" in (T}, <;). Then M;t" is an ub
of MT" in (Ay, <), and, since < is inductive,

Myt =] |M;T" < M,t".

Thus t <, t", showing that ¢ is indeed a lub of 7" in (T}, <;).
(i) = (iii) Simply take A to be a <-inequationally fully abstract, ®-least fixed
point, complete ordered algebra, and let h be the identity function from A to B = A.
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(iii) = (ii) Let < be <. Then,

tl js t2 iff hfs(Ms tl) Es hs(Ms t2)
iff Ms tl Ss Ms t2;

for tl,tQGTS,SES. |

Corollary 7.1.2 Let = be a congruence over T and ® be a family of least fived point
constraints. The following conditions are equivalent.

(i) A =-fully abstract, ®-least fived point, complete ordered algebra erists.

(ii) There is a ®-least fized point, complete ordered algebra A, together with an
inductive pre-ordering < over A, such that

ty &g to iff Moty (SN >)g Mg to,

forallt,,to €Ty, s€ S.
(iii) There is a ®-least fived point, complete ordered algebra A, together with a
continuous function h from A to a cpo B, such that

tl g tg ’Lﬁhs(Ms tl) = hs(Ms t2),
forallt,,to €T, s€ S.

Proof. We show that (ii) = (i), (i) = (iii) and (iii) = (ii).
(ii) = (i) Define a pre-ordering < over T by

tl js t2 iff Ms tl Ss Ms t27

so that < induces ~. Then by lemma 2.3.36, <¢is an {2-least substitutive pre-ordering
over T, <°1is a unary-substitutive inductive pre-ordering over A, and

t X5t iff Moty <§ M ty,

for all ty,t, € Ty, s € S. Furthermore, by lemma 2.2.26, <¢ also induces ~. Thus,
by condition (ii) of theorem 7.1.1, a ~-fully abstract, ®-least fixed point, complete
ordered algebra exists.

(i) = (iii) Simply take A to be a ~-fully abstract, ®-least fixed point, complete
ordered algebra, and let h be the identity function from A to B = A.

(iii) = (ii) Simply let < =<;,. O
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Note the subtlety in the proof that condition (ii) implies condition (i) of the
corollary: the pre-ordering =< is not necessarily substitutive, and thus <¢, which also
induces ~, must be used instead.

Condition (iii) of corollary 7.1.2 states that there exists a correct, least fixed point
model, together with a continuous “full abstraction function”, for a programming
language. It was suggested in [AptPlo| that condition (iii) might be weaker than
condition (i); the corollary shows that this is false. See the end of section 6.1 for an
application of this result.

Condition (ii) of theorem 7.1.1 is especially useful since it allows us to conclude
that fully abstract models exist for the languages of chapter 4 and, more generally,
for any language whose notion of program ordering is defined via lemma 4.1.1. We
consider the case of PCF in detail. Let S, P, X, £, A, <, < and = be as in section
4.3. We can apply condition (ii), with A*, £, <¢ and <°¢ substituted for ®, A, <
and <, respectively, and conclude that a <‘-inequationally fully abstract, A*-least
fixed point, complete ordered algebra exists. Then Z(=<¢, A*) is initial in the category
of such complete ordered algebras, by corollary 5.1.5, is inductively reachable, by
corollary 5.1.6, and is thus a ~“-contextually fully abstract, A-contextually least
fixed point, complete ordered algebra, by theorems 5.3.1 and 5.3.2.

Milner and Berry have shown that there exists a unique (up to order-isomorphism)
extensional, combinatorial, standard, <¢-inequationally fully abstract, A-contextually
least fixed point, complete ordered algebra A, and, furthermore, that A is order-
extensional and inductively reachable, since its carrier is w-algebraic and all of its
finite (isolated) elements are denotable [Mil2][Berl][BerCurLév]. In the remainder
of this section, we prove a pleasing companion result: Z(=<¢ A*) is, up to order-
isomorphism, the unique inductively reachable, <¢-inequationally fully abstract, A-
contextually least fixed point, complete ordered algebra, and thus Z(=<¢, A*) = A.

Theorem 7.1.3 Inductively reachable, ~°-fully abstract, complete ordered algebras
are combinatory algebras.

Proof. By theorem 3.1.5, £ is =“-contextually correct, and, by theorem 5.3.1,
all inductively reachable, ~¢-fully abstract, complete ordered algebras A are =°-
contextually fully abstract. Thus all universally quantified equations (expressed by
pairs of derived operators) which hold in € also hold in A. The result then follows
from the fact that £ is a combinatory algebra. O

Theorem 7.1.4 Inductively reachable, <¢-inequationally fully abstract, complete or-
dered algebras are standard.
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Proof. Let A be such an ordered algebra; we must show that conditions (i)—(iii) of
definition 4.3.8 hold.

(i) Since € is standard and =g = =%, by lemma 4.3.16, it is easy to see
that Qe 4, tt4 and ff 4 are distinct and form all of My Thoer, and that for all
a1, a2 € Moot Thoot, @1 Epoor a2 iff a1 = Qoo o1 a1 = az. But then Ay = Mpoor Thoor,
since Myoor Thoor 1s flat and A is inductively reachable.

(ii) Similar to (i).

(iii) Holds since &£ is standard and ~C-contextually correct, and A is =°-
contextually fully abstract. O

From the previous two theorems, we can conclude that Z(=<¢, A*) is a standard,
combinatory algebra. We now show that it is also order-extensional, adapting tech-
niques of Milner [Mil2] and Berry [Berl] to our framework.

Definition 7.1.5 For ¥ € Iy—na and y € Iy, let F' € Tiha—nat)—nat—nat D€

[2)[Y](+f et - (zero? - y) - 0 - (succ - (@ - (pred - y)))).
For all n € w and s € S, define ¥; € T;_,; by

nat __ .
\I]() - Qnat%nat;
nat __ nat,
vl = F-w

\I]zool _ [x]x,for xr € Ibool;

Witz = [g]|[y|(¥2 - (z - (U)! - y))),forx € I, s,y € I,.
For s € S, define ID, € T,_,s by

IDnat - Ynat%nat ' F;
ID oy = [z]z, fOr @ € Thpy;
IDg, ., = [z]|[y|(IDs, - (x - (IDy, - y))),for x € I, s,,y € L.

For an algebra A, we write ¢, for M, ,, V) € A, s and id, for M, ID; € A, .

Expanding the identifier abstractions, one can see that for all s € S, ¥} is an
w-chain in OT,_,,, and ID,=|[{ ¥ |n € w} € (A*%), .

From [Mil2] and [Berl], it is known that the )2 represent a chain of projections
with finite range in E_,; whose lub is the identify function, which is represented by
ids. In the sequel, however, we only need the following portion of this information.
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Lemma 7.1.6 (i) Foralls € S andn e w, {¢; -e|e € Es} is finite.
(ii) For alls € S and e € Ey, ids-e =e. O

Lemma 7.1.7 If A is an inductively reachable, ~°-fully abstract, A-contextually least
fized point, complete ordered algebra, and a € Ag, s € S, then a = ¢, (V2 - a).

Proof. Let A’ be the family of contextual least fixed point constraints defined by
AL ={(IDy-v)={V: -v|necwl}}

for some v € V,. Then A satisfies A’, by theorem 5.3.2 and since (A')* C A~*.
Furthermore, (ID;-v) 4 = v4, since (IDs-v)e = ve (lemma 7.1.6), £ is &°-contextually
correct, and A is &“-contextually fully abstract. Thus for all a € Aq,

a=ids-a= || a),
ncw

as required. 0O

The proof of the following lemma makes use of the internal structure of Z(<¢, A*),
in contrast to the other proofs of the section.

Lemma 7.1.8 Let A =TZ(=¢ A*). Foralln € w and a € A,, ¥3 - a is denotable.

Proof. Let I’ be the family of subsets of OT /=<¢ that is defined from A* in the
manner of lemma 5.1.1, so that A = (OT /=)', Then, for all ¢t, T' € A,

U (gt T') = (M5 93,) - (qt, T")

(ems—ss(atss V7)) - (gt T7)

= cl({gt,,, U3 }) - cl(qt, T")

cd({(qt,,, 02) - (qt, ) |t €T'})  (lemma 2.4.13)
c({ gt (¥, - 1) [t €T"}).

But { gt (Vs -t') | t' € T"} is finite, since { Mg, (Vs -t') | t' € T" } is finite, by lemma
7.1.6. Thus, by lemma 2.4.12, there exists a ¢’ € T” such that

cd({ g, (W5, - ) [# € T'}) = cl({qt,(¥5, - 1)})
= em,(qt (V5 - 1))
= M,V -t),

as required. 0O
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Theorem 7.1.9 Z(=¢ A*) is order-extensional.

Proof. Let A = Z(=¢ A*) and suppose that ai,as € A, _,,, are such that ()
a; - a' Ty, ay - d, for all a’ € A;,. By lemma 7.1.7, to show that a; Ty, g, ay it is
sufficient to show that 172 - a; Ty 5, Y2172 - ag, for all n € w. By lemma 7.1.8,
Y792 gy and 217%2 - ay are denotable. Furthermore, for all denotable o' € A,

(" ) = (- ()
= (- (03 a)
(,[7/)814)52 CL) CL

by (1) and since A is a combinatory algebra. Thus, by the obvious semantic restate-
ment of theorem 4.3.17, ¢ 7% - ay Ty, Y2179 - ay, as required. O

Combining theorems 7.1.3, 7.1.4 and 7.1.9, we have that Z(=<¢, A*) is a standard,
order-extensional, combinatory algebra. It remains to show the promised uniqueness
result.

The following lemma, which we will also use in the next section, is taken from the
proof of theorem 4.6 of [Plol].

Lemma 7.1.10 (i) If h: A — B is a homomorphism over algebras, A is extensional,
and hye and hpe are injections then h is an injection.

(i) If h: A — B is a monotonic homomorphism over ordered algebras, A is order-
extensional, and hyq and hyee are order-embeddings then h is an order-embedding.

Proof. We prove (ii), leaving (i), which is similar, to the reader. Let s = s; —---—
Sp—p, forn>1,s€5,1<i<n,andp € P, and suppose hya C; hya'. Then for
all a; € A, 1 <1< n,

h'p(a t@poce an) = (h's a) (h51 al) ) (hsn an)
C (h's a') (h'81 al) : (h'sn an)
= hy(d' - ay an),
so that
a'a'l'""angpa,'al""'any

since h, is an order-embedding. Thus a C; d/, since A is order-extensional. O

113



Theorem 7.1.11 Z(=¢ A*) is the unique (up to order-isomorphism) inductively
reachable, <-inequationally fully abstract, A-contextually least fized point, complete
ordered algebra.

Proof. Let A= Z(=¢ A*) and h be the unique continuous homomorphism from A
to another such ordered algebra, B. We show that h is a surjective order-embedding.
Suppose that ay,as € Ay, p € P, and hya; T, hyay. Since A is standard, there exist
terms ¢, ty € T}, such that M,t; = a;, for 2 = 1,2. Then,

MBP t1 = h'p(MAp tl) Cp h'p(MAp tZ) = MBP t2,

showing that a; = M4, t, £, M4, ty = ay. Thus h,, and hyee are order-embeddings,
and, by lemma 7.1.10, we can conclude that A itself is an order-embedding. It remains
to show that A is surjective. If hy A" C By is directed, for A" C A,, then A’ is also
directed, since h is an order-embedding, and thus hy| | A" = || hs A’. Thus h A is an
inductive subalgebra of B, and, since B is inductively reachable, h A =5B. O

Corollary 7.1.12 All inductively reachable, =<¢-inequationally fully abstract, A-
contextually least fized point, complete ordered algebras are standard, order-
extensional, combinatory algebras.

Proof. Such an ordered algebra is standard and combinatorial, by theorems 7.1.4
and 7.1.3, and is order-isomorphic to Z(=<¢, A*), by theorem 7.1.11. But Z(=¢, A*) is
order-extensional, by theorem 7.1.9, and order-extensionality is obviously preserved
by order-isomorphisms. O

7.2 Collapsing Correct Models into Fully Abstract
Models

Given a correct, least fixed point, complete ordered algebra, it is natural to consider
collapsing it, via a continuous homomorphism, into a fully abstract, least fixed point,
complete ordered algebra. This, of course, is not always possible, since fully abstract
models do not always exist. But, is it always possible when such models do exist? The
answer is “no”; in fact neither of the following conditions are sufficient to guarantee
that a <-inequationally correct, ®-least fixed point, complete ordered algebra A can
be continuously collapsed into a <-inequationally fully abstract, ®-least fixed point,
complete ordered algebra:
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(i) A is inductively reachable, and there exist <-inequationally fully abstract,
®-least fixed point, complete ordered algebras;

(ii) < is related to an inductive pre-ordering < over A according to condition (ii)
of theorem 7.1.1, so that <-inequationally fully abstract, ®-least fixed point, complete
ordered algebras exist.

We shall see, however, that the conjunction of these conditions is sufficient. Theorem
5.4.5 shows that (i) is not sufficient, and we now present a theorem of Plotkin’s
(unpublished) that shows the insufficiency of (ii).

For the next theorem and the remarks that follow, let P, S, X, £, A, <X, =, <,

portest; and por be as in section 4.3.

Theorem 7.2.1 £ cannot be collapsed, via a homomorphism, to a =°-fully abstract
algebra. In particular, £ cannot be collapsed, via a continuous homomorphism, to a
< -inequationally fully abstract, A*-least fized point, complete ordered algebra.

Proof. We give two proofs of the theorem. The first is due to Plotkin, and the
second to the author.

(i) Suppose, toward a contradiction, that A is a homomorphism from £ to a ~°-
fully abstract algebra A. Since € is standard and ~¢|P = ~x4|P (lemma 4.3.16), it
follows that h,. and hp.e are injections, and thus that A itself is an injection, by
lemma 7.1.10. But then ~¢ = ~4 = &¢, contradicting the fact that £ is not ~°-fully
abstract.

(ii) It is sufficient to show that there does not exist a congruence = over £ such
that

t &5t i Mgty =5 M ts,

for all t,t, € Ty, s € S. Suppose, toward a contradiction, that such a congruence =
exists. Let s’ be the sort (bool — bool — bool) — nat. Then,

portest, x5, portest,
= Mg portest, =y My portest,
= Muu 1 = (M portesty) - por =4 (Mg portesty) - por = My 2

= 1~ 2

nat <

which is a contradiction. O

A consequence of this theorem is that £ and <¢ provide an alternative proof of
lemma 2.3.34; in particular, <¢ is unary-substitutive but not substitutive.

115



Next we show that, whenever they are possible, continuous collapses can be carried
out using the inductive quotienting construction of section 2.4.

Lemma 7.2.2 Let < be an Q-least substitutive pre-ordering over T, ® be a family
of least fized point constraints, A be a ®-least fixed point, complete ordered algebra,
and < be a substitutive inductive pre-ordering over A such that

b Rt iff Moty <g M to,

forallt,,to € Ty, s € S. Then A can be collapsed, via the continuous homomorphism

qt, to the <-inequationally fully abstract, ®-least fized point, complete ordered algebra
Al/<.

Proof. For the inequational full abstraction of A//<, let ¢;,ty € Ty, s € S. Then,

tl js t2 iff MAs tl Ss MAs t2
iff qts(MAs tl) E(A//S)s qts(MAs t2)
it Meay<),t By, May<), to-

To see that A//< satisfies ®, let t=|T" € ®,, s € S. Then,

May<),t = qt(Mast)
= qts |_| MAs T’
= |_| qts (MAs T,)
= | May<), T,

as required. 0O

Lemma 7.2.3 Let A be a ®-least fived point, complete ordered algebra. The following
two conditions are equivalent.
(i) There is a <-inequationally fully abstract, ®-least fized point, complete ordered
algebra B, together with a continuous homomorphism h: A — B.
(ii) There is a substitutive inductive pre-ordering < over A such that for allt,,ty €
T, s €S,
b Xt iff Moty <g M ts.
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Proof. For (i) = (ii), let < be <;,. Then < is a substitutive inductive pre-ordering
over A, and for t,t, € Ty, s € S,

b1 =5 t2 iff MBs 11 Cs MBS ta
HE hy(Magtr) Ty hs(Myyto)
iff MAs b1 <s MAs ta.

For (ii) = (i), simply apply lemma 7.2.2. O

Now we are able to give a sufficient condition for the possibility of collapsing in-
ductively reachable, inequationally correct models, via continuous homomorphisms,
to inequationally fully abstract models, and, more generally, for collapsing the reach-
able inductive subalgebras of inequationally correct models to inequationally fully
abstract models.

Theorem 7.2.4 Suppose =< is an §2-least substitutive pre-ordering over T, ® is a
family of least fized point constraints, A is a ®-least fixed point, complete ordered
algebra, and < is an inductive pre-ordering over A with the property that

b Rt iff Moty < M to,

for all ty,ty € Ty, s € S. Let <" be the restriction of <¢ to R(A). Then R(A) can
be collapsed, via the continuous homomorphism qt, to the inductively reachable, <-
inequationally fully abstract, ®-least fived point, complete ordered algebra R(A)//<'.

Proof. By lemmas 2.3.14, 2.3.12 and 2.3.35, <’ is a substitutive inductive pre-
ordering over R(A), and, by lemma 2.3.37,

ty <y to iff Mgty <& Mty iff Mty <!, Mts,

for all ty,t, € T, s € S. Thus, by lemma 7.2.2, R(A) can be collapsed, via the con-
tinuous homomorphism ¢t, to the <-inequationally fully abstract, ®-least fixed point,
complete ordered algebra R(A)//<', and, by lemma 2.4.21, R(A)//<' is inductively
reachable. 0O

Note the following special cases of theorem 7.2.4. If < is already unary-substitutive
then R(A) can be collapsed to R(A)//<', where <’ is simply the restriction of < to
R(A). If < is unary-substitutive and A is inductively reachable then A itself can be
collapsed to A//<, since < is in fact substitutive.
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Theorem 7.2.4 can be immediately applied to the languages of chapter 4 and, more
generally, to languages whose notions of program ordering are defined via lemma 4.1.1.
Consider, e.g., the case of PCF. Let S, ¥, £, A, <, < and = be as in section 4.3.
Then R(E) can be collapsed, via the continuous homomorphism g¢t, to the inductively
reachable, <¢inequationally fully abstract, A*-least fixed point, complete ordered
algebra R(&)//<', where <’ is the restriction of <¢to R(F). Furthermore, R(E)//<’
is also =“-fully abstract, and thus, by theorems 5.3.1 and 5.3.2, is ~°-contextually
fully abstract and A-contextually least fixed point. Finally, theorem 7.1.11 allows us
to conclude that R(€)//<' is order-isomorphic to Z(=¢, A*), and is thus a standard,
order-extensional, combinatory algebra, by corollary 7.1.12. Summarizing, we have
the following corollary.

Corollary 7.2.5 R(E) can be collapsed, wvia a continuous homomorphism, to
I(=¢,A%). O

We can also prove the following equational variant of theorem 7.2.4.

Corollary 7.2.6 Suppose = is a congruence over T, ® is a family of least fized point
constraints, A is a ®-least fired point, complete ordered algebra, and h is a continuous
function from A to a cpo B, such that

tl s t2 Z.[fhs(]\fs tl) - hs(Ms t2)7

for allt,ty € Ty, s € S. Then R(A) can be collapsed, via the continuous homomor-
phism qt, to the inductively reachable, ~-fully abstract, ®-least fized point, complete
ordered algebra R(A)//<', where < is the restriction of (<;)¢ to R(A).

Proof. Define a pre-ordering < over 1" by
tl js t2 iff Ms tl (Sh)s Ms t2;

so that < induces ~ (but < may not be substitutive!). Then, by lemma 2.3.36, <° is
an {)-least substitutive pre-ordering over 7, (<;)¢ is a unary-substitutive inductive
pre-ordering over A,

ty 2§t iff Moty (<p)s M ty,

forall t,,t5 € T, s € S, and, by lemma 2.2.26, <¢ also induces ~. The desired result
follows by theorem 7.2.4. O
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Chapter 8

Conclusion

In the preceding chapters, we have developed a theory of fully abstract models of
programming languages and applied this theory to several programming languages.
On the basis of these examples, it seems likely that the theory will yield proofs of the
existence or nonexistence of fully abstract models of a wide variety of programming
languages. I expect, for example, that the existence of fully abstract models for the
Algol-like language of [HalMeyTra] can be shown using the methods of chapter 7,
and that the nonexistence of fully abstract models of the fair parallel programming
language of [Plo2] can be shown using the techniques of chapter 6. In this final
chapter, we consider the theory’s limitations and the corresponding possibilities for
further research.

The cornerstone of the theory is its class of models: complete ordered algebras.
This was a natural and rewarding choice, but there are many other important classes
of models, narrower and wider, that should also be studied. Examples include: uni-
versal algebras whose carriers are cpo’s with additional order-theoretic structure, e.g.,
consistently-complete w-algebraic cpo’s; models based on weaker notions of continuity
[Plo2|; categorical models [Leh|[Abr2]; and models definable in particular metalan-
guages (and thus, in a formal sense, natural). The extension of the theory to these
classes of models will probably involve the development of new quotienting and com-
pletion constructions.

An essential feature of the theory is the inclusion of the undefined constants €2
in all signatures, and the corresponding requirements that they be interpreted as L
in models, and be least elements in notions of program ordering. Unfortunately, this
feature limits the applicability of the theory. There are programming languages, such
as the parallel programming language of [HenPlo1], whose notions of program ordering
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do not have least elements, and, thus, whose inequationally correct models cannot
have denotable least elements. (Our theory should be applicable, however, to the
language of [HenPlo1] minus the somewhat peculiar coroutine construct.) There may
even be naturally occurring languages for which equationally fully abstract models
exist, but such that there do not exist such models with denotable least elements. It is
thus desirable to develop a theory in which the undefined constants are not required.
This would be a radical departure from the current theory, however, and it is unclear
how to proceed.

As we indicated in chapter 4, our treatment of programming languages with block
structure, such as TIE and the lambda calculus variant of PCF, is only partially
satisfactory, for the following reasons. First, we are unable to construct environment
models for these languages, i.e., models that have identifier environments as formal
components. Second, our theory is not directly applicable to notions of program
ordering and equivalence that are defined in terms of the behaviour of closed terms
of program sort, as opposed to all such terms. Third, there apparently do not exist
suitable families of least fixed point constraints for certain languages with recursion,
such as the call-by-value version of TIE. Removing the first of these defects, and
giving program identifiers and their scopes formal status in signatures, is the first
step toward the removal of the second and third defects.

Notions of program equivalence are often defined as abstractions of operational
semantics, as with the languages of chapter 6. Unfortunately, the condition for the
existence of inequationally fully abstract models of section 7.1, which was the basis for
our positive results, is model-theoretic in nature and is expressed in terms of program
orderings instead of equivalences. It would thus be useful to develop conditions for
the existence of fully abstract models that are directly applicable to operationally
defined program equivalences.

In section 7.2, we gave useful sufficient conditions for the possibility of collaps-
ing inductively reachable correct models, via continuous homomorphisms, to fully
abstract models, and, more generally, for collapsing the reachable inductive subal-
gebras of correct models to fully abstract models. We also showed that it is not
always possible to collapse correct models in such a way. Useful sufficient conditions
for the possibility of collapsing non-inductively reachable correct models should be
developed.

In section 5.4, we began the study of various categories of correct and fully abstract
models, proving theorems concerning the existence and nonexistence of initial and
terminal objects, respectively. Much remains to be learned about the structure of
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these categories, and thus this study should continue. In particular, it would be nice
to resolve conjecture 5.4.6.

Finally, more should be learned about the internal structure of the conservative
completions of posets and ordered algebras of section 2.4. In particular, conjecture
2.4.11 should be settled.
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