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Figure 1: Syntax of lambda expressionsn 2 IntVar n 2 Exp a; b 2 ExpAppha; bi 2 Exp n 2 Int a 2 ExpLamhn; ai 2 ExpFigure 2: Values and environmentse 2 Env n 2 Int a 2 ExpCloshe; n; ai 2 VluNilh i 2 Env n 2 Int x 2 Vlu e 2 EnvConshn; x; ei 2 EnvTo de�ne the semantics of expression evaluation, we need two simple semantic spaces.The sets Vlu of values and Env of environments are de�ned inductively by the rules ofFigure 2. For example, if x and y are values, thene = Consh1; x;Consh3; y;Nilh iiiis an environment: the one in which variable 1 has value x, and variable 3 has value y. Notethat e is sorted by variable number. The functions on environments that we de�ne willassume and preserve the sortedness of environments. We also need the familiar auxiliaryfunctions for looking up the value of an identi�er in an environment and updating anenvironment to re
ect a new binding:Lookup:Env! Int! (fh ig + Vlu)Update:Env! Int! Vlu! Env:To understand the signi�cance of the sum in Lookup's type, consider the environment ede�ned above. Then, Lookup e 2 is in(0; h i), the injection of the empty tuple into the 0thcomponent of the sum, since variable 2 is not bound in e. And Lookup e 1 is in(1; x), theinjection of variable 1's value in e into the 1st component of the sum.The semantics of expression evaluation can be de�ned as in Figure 3, where we read\a; e ) x" as \expression a in environment e evaluates to value x". We consider thesingle premise of the variable evaluation rule to be a \side-condition", since it doesn'tinvolve expression evaluation. The most straightforward way to view this de�nition is asthe inductive de�nition of the relation ) � Exp � Env � Vlu, where a; e ) x abbreviatesha; e; xi 2 ). Given this interpretation, we can prove the following facts:2



Figure 3: De�nition of expression evaluationLookup e n = in(1; x)Var n; e ) xLamhn; ai; e ) Closhe; n; aia; e ) Closhe0; n; a0i b; e ) y a0;Update e0 ny ) zAppha; bi; e ) zFigure 4: Complete derivation
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(where x = CloshNilh i; 0; v0i and e0;x = Consh0; x;Nilh ii)1. ) is a partial function from Exp� Env to Vlu.2. (�0: v0)(�0: v0);Nilh i ) CloshNilh i; 0; v0i.3. (�0: v1)(�0: v0);Nilh i ) x for no x 2 Vlu.4. (�0: v0 v0)(�0: v0 v0);Nilh i ) x for no x 2 Vlu.It is also possible to think about expression evaluation more concretely. For example,Figure 4 (ignore the labels (1)-(8) for now) consists of a derivation tree proving (providingevidence for) Fact (2). Since the leftmost and middle children of this tree are instancesof the axiom for abstraction evaluation, and the rightmost child follows by the variablerule (we omit the rule's premise, since it's a side-condition), the conclusion follows by theapplication rule.But, it is also possible and useful to think even more concretely, to focus on the step-by-step procedure in which derivation trees are constructed. With the tree of Figure 4, we begin,in Step (1), with the incomplete derivation tree consisting of the expression/environment3



Figure 5: Blocked incomplete derivation
(�0: v1)(�0: v0);Nilh i )
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(where x = CloshNilh i; 0; v1i, y = CloshNilh i; 0; v0i and e0;y = Consh0; y;Nilh ii)pair (�0: v0)(�0: v0);Nilh i. Next, since our expression is an application, we begin evaluatingthe left side of the application, in Step (2), and �nish this evaluation, in Step (3). InSteps (4) and (5), we evaluate the right side of the application. In Steps (6) and (7), weevaluate the expression of the closure x in the environment that is formed by binding thevariable of the closure in the environment of the closure to the value of the right side of theapplication. Finally, in Step (8), we take the result of this rightmost evaluation and makeit the result of our overall evaluation, giving us a complete derivation providing evidencefor Fact (2).It is easy to prove that the tree expansion procedure that we followed above is sound andcomplete. If we start with an incomplete tree consisting of an expression/environment paira; e and terminate with a complete tree whose root is a; e ) x, then a; e evaluates to x. And,if a; e evaluates to x, then the procedure will turn the incomplete tree consisting of a; e intoa complete tree with root a; e ) x. When the procedure doesn't terminate with a completederivation tree, it provides an explanation for why the starting expression/environmentpair fails to evaluate to any value. Figure 5 gives an explanation for why Fact (3) holds:the procedure terminates with a blocked incomplete derivation tree, since variable 1 is notbound in environment e0;y. And Figure 6 gives an explanation for why Fact (4) holds: theprocedure fails to terminate, giving, in the limit, an in�nite incomplete derivation tree.2 A framework for deterministic operational semanticsWe are designing and implementing a framework for Deterministic OPerational Semanticscalled Dops that will support the incremental construction of derivation trees, starting fromobject language term/input pairs. We restrict our attention to deterministic semantics fortwo reasons. First, one often wants a semantics to be deterministic, and so it is useful tohave frameworks in which expressed semantics are guaranteed to be deterministic. Second,
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Figure 6: In�nite incomplete derivation
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(where x = CloshNilh i; 0; v0 v0i and e0;x = Consh0; x;Nilh ii)to be useful in practice, our tree expansion procedure itself will have to be deterministic,which means that any nondeterminism would have to be re
ected either in the structure ofthe derivation trees themselves or in a lack of monotonicity of the tree expansion process.Neither of these alternatives seems desirable.The operational semantics of an object language is expressed in the Dops metalan-guage, a typed lambda calculus with sums, products, algebraic datatypes (recursive typesnot directly involving function types) and primitive recursion. This lambda calculus onlyexpresses total functions, i.e., all well-typed lambda terms converge to values. In the met-alanguage, n-ary sums, products and tuples are written like [�0; : : : ; �n�1], f�0; : : : ; �n�1gand fx0; : : : ; xn�1g, respectively, so that fg is the single value of the unit type fg. Much ofthe metalanguage's syntax is reminiscent of Standard ML.The syntactic categories of an object language are de�ned as sorts in the Dops meta-language, and each sort has associated with it input and output types. Figure 7 shows howthe single sort Exp of our example object language, along with its associated input andoutput types, Env and Vlu, can be expressed in our metalanguage. Figure 8 shows howthe auxiliary functions Lookup and Update can be de�ned in the Dops metalanguage, usingprimitive recursion. (Straightforward constraints are used to prohibit general recursion.)For each constructor of a given sort (Var, Lam and App in our example object language),a corresponding semantic rule must be speci�ed as a metalanguage term. When an object
5



Figure 7: Dops de�nitions of sorts and datatypessort Exp = Var of Int | App of {Exp, Exp} | Lam of {Int, Exp}datatype Vlu = Clos of {Env, Int, Exp}and Env = Nil of {} | Cons of {Int, Vlu, Env}
Figure 8: Dops de�nitions of auxiliary functionstype VluOpt = [{}, Vlu]rec Lookup : Env -> Int -> VluOpt =Nil{} => fn _ : Int => in(0, VluOpt, {})| Cons{l, u, e} => fn n : Int =>case n < l ofTrue{} => in(0, VluOpt, {})| False{} =>case n = l ofTrue{} => u| False{} => Lookup e nesacesacrec Update : Env -> Int -> Vlu -> Env =Nil{} => fn n : Int => fn v : Int => Cons{n, v, Nil{}}| Cons{l, u, e} => fn n : Int => fn v : Int =>case n < l ofTrue{} => Cons{n, v, Cons{l, u, e}}| False{} =>case n = l ofTrue{} => Cons{l, v, e}| False{} => Cons{l, u, Update e n v}esacesac
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language semantics would ordinarily have multiple inference rules for a single constructor,e.g., for a conditional operator, the multiple rules will have to be combined into a singlemetalanguage term, in a process that is similar to the \left-factoring" of [7]. The rulecorresponding to a constructor � of sort � takes in an instance p of the constructor's data anda value x of �'s input type, and describes how the term � p should be evaluated with inputx. This evaluation may cause various sub-evaluations to be initiated, and may eventuallyterminate with the production of a value of �'s output type. Resumptions are used toconsume the output values of sub-evaluations and then resume the rule's work. The typesof rules involve action types, which describe the number and kinds of sub-evaluations thatan application of a rule is capable of initiating, and indicate whether an application of arule is capable of blocking. Since the metalanguage is deterministic, and there is only onerule per constructor, only deterministic semantics can be expressed in Dops.Figure 9 shows how the semantic rules of our example object language can be expressedin the Dops metalanguage. Consider the most complex of these rules: App. The lambdaterm for App takes in the left and right sides, a and b, of the application to be evaluated,along with the environment e in which the evaluation should be carried out. It then returnsan element of the action type AppAct. Action types always consist of sums with two ormore components. Since the 0th component of AppAct is the empty type, we know that theevaluation of an application is incapable of immediately blocking; if it had been the unittype, then immediate blocking might have been possible. And, since the 1st componentof AppAct is also the empty type, we know that the evaluation of an application cannotimmediately result in a value of type Vlu (the output type of our constructor's sort); if thiscomponent had been Vlu, then immediate production of an output value might have beenpossible. Thus the value returned by the application rule will have to consist of (the injectioninto the 2nd component of the sum of) a triple with type fExp;Env;Vlu! AppAct1g. Thetriple returned should be thought of as a request to initiate a sub-evaluation: to evaluatethe 0th component of the triple with its 1st component as input, and then to supply theoutput value produced by this sub-evaluation to the resumption that is the 2nd componentof the triple. The actual triple returned is thus a request to evaluate the left side a of theapplication in the environment e, and then to call the supplied resumption with the outputvalue x of this sub-evaluation. The value x must be a closure, and the resumption �rstgives names to the components of the closure, and then initiates a second sub-evaluation:the evaluation of the right side b of the application in the environment e, where the outputvalue y of the sub-evaluation is to be given to the supplied resumption. This resumption,when invoked, will initiate a third and �nal sub-evaluation: the evaluation of the expressiona0 of the closure in the environment that is obtained by updating the environment e0 of theclosure so that the variable n of the closure is bound to the value y of b, where the outputvalue z of this sub-evaluation is to be given to the �nal resumption, which must producea value of action type AppAct3. Since AppAct3 has only two components, and only its 1st
7



Figure 9: Dops de�nitions of semantic rulestype VarAct = [{}, Vlu]rule Var : Int -> Env -> VarAct =fn n : Int => fn e : Env => Lookup e ntype AppAct3 = [[], Vlu]type AppAct2 = [[], [], {Exp, Env, Vlu -> AppAct3}]type AppAct1 = [[], [], {Exp, Env, Vlu -> AppAct2}]type AppAct = [[], [], {Exp, Env, Vlu -> AppAct1}]rule App : {Exp, Exp} -> Env -> AppAct =fn {a, b} : {Exp, Exp} => fn e : Env =>in(2, AppAct,{a, e,fn x : Vlu =>case x ofClos{e', n, a'} =>in(2, AppAct1,{b, e,fn y : Vlu =>in(2, AppAct2,{a', Update e' n y,fn z : Vlu =>in(1, AppAct3, z)})})esac})type LamAct = [[], Vlu]rule Lam : {Int, Exp} -> Env -> LamAct =fn {n, a} : {Int, Exp} => fn e : Env =>in(1, LamAct, Clos{e, n, a})
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Figure 10: Concrete derivation treesInitha; xi 2 � �
 2 �+Incha; x; �
; fi 2 � �
 2 ��Compha; x; �
; yi 2 �component is nonempty, this resumption must yield (the injection into the 1st componentof AppAct3 of) an output value. The actual value returned is, of course, z.By examining the action types VarAct and LamAct, we can tell that evaluating variablesand lambda expressions never involves the initiation of sub-evaluations. In particular, theside-condition of the variable evaluation rule is handled inside the rule. According to VarAct,variable evaluation may be capable of blocking, since its 0th component is the unit type; and,if we look at the semantic rule for variable evaluation, we will see that variable evaluationblocks when a variable is looked up in an environment where it is unbound. On the otherhand, LamAct tells us that lambda expression evaluation always terminates normally.The semantics of Dops is de�ned in an object language-independent manner via a small-step semantics on the set � of concrete derivation trees, which are inductively de�ned inFigure 10. In this �gure, �� denotes the set of all tuples of elements of �, and �+ denotesthe set of all nonempty tuples of elements of �. When evaluating a term a with inputx, one starts with the initial concrete derivation tree Initha; xi. After some number oftree expansion steps, one may have an incomplete concrete derivation tree of the formIncha; x; �
; fi. Here the elements of �
 are the sub-derivations that have been constructedso far during the evaluation, and the resumption f is waiting for the last sub-derivationof �
 to become complete; then the output value of this sub-derivation will be supplied tothe resumption. Eventually, the tree expansion process may terminate with a completeconcrete derivation tree of the form Compha; x; �
; yi. Here, y is the output value obtainedafter evaluating a with input x, and �
 would only be the empty tuple if the completederivation tree was formed directly from Initha; xi. There is a typing system for concretederivation trees that puts some additional constraints on these trees, requiring the typesof their components to be compatible and requiring all non-�nal sub-derivations to becomplete.The tree expansion relation! � ��� is inductively de�ned by Figure 11, where i � 0,+ is the metalanguage evaluation relation, rule� denotes the rule (a metalanguage term)corresponding to the constructor �, and @ appends tuples. Note that the premises of the�rst four rules don't involve tree expansion and so can be viewed as side-conditions.The �rst two tree expansion rules show how an initial concrete derivation tree Inith� p; xiis expanded. We proceed by taking the rule corresponding to the constructor � and applyingit to the constructor's data p and the input value x. If our derivation tree is well-typed, this
9



Figure 11: De�nition of tree expansion relationrule� p x + in(1; �; y)Inith� p; xi ! Comph� p; x; h i; yirule� p x + in(i+ 2; �; fa; y; fg)Inith� p; xi ! Inch� p; x; hInitha; yii; fif z + in(1; �; w)Incha; x; �
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will result in a value of the action type � of �'s rule (metalanguage non-termination is notpossible). If the action type allows for immediate blocking, then the resulting value mayhave the form in(0; �; fg), which means that object language blocking will occur. Otherwise,there are two possibilities. The resulting value may have the form in(1; �; y), which meansthat the rule has immediately produced the output value y, in which case our derivationtree must be turned into a complete concrete derivation tree with output y. On the otherhand, the value may have the form in(i + 2; �; fa; y; fg), which is a request to initiate asub-evaluation. In this case, our derivation tree is turned into the incomplete concretederivation tree Inch� p; x; hInitha; yii; fi;in which the sub-evaluation of term a with input y has been initiated, and the resumptionf is waiting for the sub-derivation Initha; yi to become complete.The next two tree expansion rules are similar, but are concerned with the expansionof incomplete concrete derivation trees whose last sub-derivations have become complete.Again, object language blocking is only possible if allowed by the action type � of themetalanguage term that is being evaluated. Finally, the last rule is a contextual rule: itshows how the last sub-derivation of an incomplete concrete derivation tree can be expandedin place.There is one more aspect to the semantics of Dops: the translation of concrete derivationtrees into abstract derivation trees. Abstract derivation trees are de�ned as certain functionsfrom tree paths to tree nodes consisting of either term/input pairs a; x or output values y.Then, a tree abstraction function abs can be de�ned in such a way that 
 ! 
0 implies thatabs 
 � abs 
0. Resumptions are discarded as part of the abstraction process. Then, themeaning of a term/input pair a; x can be de�ned to be the abstract derivation tree[f abs 
 j Initha; xi !� 
 g:The meaning of a term/input pair will be a complete (and �nite) derivation tree like thetree of Figure 4, or a blocked incomplete derivation tree like the one of Figure 5, or anin�nite incomplete derivation tree like the one of Figure 6.The implementation of Dops will allow users to construct as much of the meanings ofterm/input pairs as they desire. At each point in the evaluation of a given term/inputpair, the user will be presented with a single node of the abstraction of the current concretederivation tree, since the whole abstract derivation tree will typically be far too large todisplay in its entirety. The user will be able to navigate around the abstract derivationtree, and to view as much of the metalanguage values occurring in the tree's nodes as theywish (these values may themselves become too large to display fully). They may also optto view the resumptions that occur in the underlying concrete derivation tree, which willnormally be hidden. There will be various commands for continuing the tree expansionprocess, causing more of the �nal meaning to be constructed.11



Dops speci�cations of the following operational semantics have been written: a typingsystem for the simply typed lambda calculus, substitution-based, big- and small-step se-mantics for the call-by-value untyped lambda-calculus, and big- and small-step semanticsfor a simple imperative language. When expressing a small-step semantics in Dops, onewill make use of output types involving terms. It is also useful to add an extra layer to asmall-step semantics that computes the transitive closure of the original small-step relation.Dops is currently being implemented in Standard ML.3 Comparison with related workThere are various operational semantics (or logical) frameworks that allow users to evaluateobject language term/input pairs [2, 1, 6, 7, 4]. Some of these frameworks support theconstruction of complete derivation trees in cases when term/input pairs evaluate to outputvalues [1, 6, 4]. But, as far as I know, only D. Berry's Animator Generator [1] supports theincremental construction of derivation trees.The Animator Generator takes in a deterministic operational semantics for a program-ming language and generates an animator for that language. The animator incrementallyconstructs derivation trees, starting from term/input pairs, and displays various views ofthose trees. One of these views, which Berry calls a \semantic view", displays whole deriva-tion trees. From our point of view, however, the Animator Generator su�ers from severalde�ciencies.The Animator Generator doesn't do a good job of displaying derivation trees (supportingother kinds of views had much higher priority). The main problem is that it insists ondisplaying an entire derivation tree in a single window; when the tree becomes large, thismakes it very di�cult to navigate around the tree. The problem is compounded by thefact that semantic values are also displayed in their entirety. We hope that our approachto displaying derivation trees will work better in practice.In the Animator Generator's metalanguage, auxiliary tests and functions must be ex-pressed as separate sets of rules. Unfortunately, this means that the side-conditions andauxiliary operations of rules may fail to be total (i.e., may diverge), which can lead to ap-parent rule blocking that won't be detected by the system. This de�ciency is shared by allof the frameworks referred to above, but is avoided in Dops by employing a metalanguagein which all terms converge.Finally, the tree expansion model of the Animator Generator is much more complicatedthan our de�nition of tree expansion (Figure 11) via a small-step semantics on concretederivation trees.The incremental construction of derivation trees has also been advocated by Gunter andR�emy [3]. They gave a de�nition of \partial proofs" in the context of a big-step semanticsof a simple programming language. However, they only gave an informal description of how
12
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